Современная экологическая обстановка в отдельных странах и регионах оставляет желать лучшего. Миссия нашего сайте — обеспечить русскоязычных жителей планеты Земля актуальной информацией о защите окружающей среды, экологической безопасности и экологии в целом.

Полезные ресурсы и публикации:
-

Н.А. Галактионова
Промышленная экология

Учебное пособие для студентов заочного отделения / Москва: Международный независимый эколого-политологический университет, 2002

Предыдущая

Тема 4. Основные технологические процессы

4.5. Тепловые процессы

4.5.2. Нагревание

Нагревание широко применяется в химической технике для ускорения многих массообменных процессов и химических превращений. В зависимости от температурных и других условий проведения процесса применяются разнообразные методы нагревания. Для каждого конкретного процесса приходится выбирать наиболее оправданный в технологическом и экономическом отношении метод нагревания.

Наибольшее распространение в химической технике получили следующие методы нагревания: водяным паром, топочными газами, промежуточными теплоносителями, электрическим током.

НАГРЕВАНИЕ ВОДЯНЫМ ПАРОМ

Для нагревания применяется преимущественно насыщенный водяной пар при абсолютных давлениях до 10—12 ат. Использование пара большего давления требует сложной и дорогостоящей аппаратуры, что, как правило, экономически не оправдывается. Соответственно абсолютному давлению 10—12 ат нагревание насыщенным водяным паром ограничено температурой —180° С. В процессе нагревания насыщенный пар конденсируется, выделяя при этом тепло, равное теплоте испарения жидкости.

Довольно широкому распространению способа нагревания водяным паром способствовали преимущества этого метода обогрева, а именно:

1) большое количество тепла, выделяющегося при конденсации единицы водяного пара (539—476 ккал на 1 кг конденсирующегося пара при абсолютных давлениях соответственно 1—12 ат);

2) равномерность обогрева, так как конденсация пара происходит при постоянной температуре.

Нагревание   «острым»   паром. При нагревании «острым» паром водяной пар  вводится непосредственно  в нагреваемую жидкость; конденсируясь, он отдает тепло нагреваемой жидкости, а конденсат смешивается с жидкостью.

Для одновременного нагревания и перемешивания жидкости пар вводится  через  барботер — трубу  с  рядом  небольших   отверстий. Барботер располагают на дне резервуара в виде спирали (рис. 4.18)

Рис.4.18. Паровой барбатер:
1 – резервуар; 2 – барбатер;
3 – паропровод; 4 – запорный

вентиль

При обогреве «острым» паром происходит неизбежное разбавление нагреваемой жидкости конденсатом — водой. Обычно этот способ применяют для нагревания воды и водных растворов.

Нагревание «глухим» паром.  Если нагреваемая жидкость взаимодействует    с  водой,   контакт  между   ними    недопустим или нельзя  разбавлять  нагреваемую жидкость,   применяют  нагревание «глухим» паром. В этом случае   жидкость  нагревается  паром через  разделяющую   их   стенку в аппаратах с рубашками, со змеевиками и т. д.

Греющий «глухой» пар целиком конденсируется и выводится из парового пространства нагревательного аппарата в виде конденсата. Температура конденсата может быть принята с достаточной точностью равной температуре насыщенного греющего пара.

На рисунке 4.19 схема аппарата с рубашкой для нагревания глухим паром.

Рис. 4.19. Схема аппарата с рубашкой для нагревания глухим паром:
1 – нагревательный аппарат (рубашка); 2 – отдувочный вентиль; 3 – водоотводчик; 4,5 – запорные вентили; 6 – запорный вентиль; 7 – обводная линия.

 

НАГРЕВАНИЕ ТОПОЧНЫМИ ГАЗАМИ

Нагревание топочными газами — самый старый способ обогрева в химической промышленности. Этим способом осуществляется нагревание до температур 180—1000° С. Дымовые газы образуются при сжигании твердого, жидкого или газообразного топлива (преимущественно при атмосферном давлении) в топках или печах различной конструкции.

Особенностей нагрева дымовыми газами являются «жесткие» условия нагревания: значительные перепады температур. Благодаря большим температурным перепадам при нагревании дымовыми газами достигаются высокие тепловые нагрузки. Однако при этом методе нагревания трудно регулировать процесс и избежать перегрева материалов из-за неравномерности обогрева; кроме того, при разбавлении дымовых газов большим количеством воздуха происходит окисление металлов. Следует отметить огнеопасность обогрева дымовыми газами.

Непосредственное нагревание топочными газами осуществляется в трубчатых печах, а также в печах для реакционных котлов или автоклавов.

Простейшая трубчатая печь изображена на рисунке 4.20. Топочные газы образуются в топке 1, куда вводится топлива (твердое, жидкое, газообразное) и необходимый для горения воздух. Для понижения температуры газов в топочном пространстве в топочную камеру 2 через окно 3 вентилятором 4 нагнетается воздух. Топочные газы омывают трубчатый змеевик 5, расположенный в шахте 6, а затем удаляется через боров 7.

Рис. 4.20. Трубчатая печь:
 1 – топка; 2 – топочная камера; 3 – окно; 4 – вентилятор;

5 – змеевик; 6 – шахта; 7 – боров.

НАГРЕВАНИЕ ПРОМЕЖУТОЧНЫМИ ТЕПЛОНОСИТЕЛЯМИ

При нагревании многих материалов для сохранения качества продуктов или обеспечения безопасной работы недопустим даже кратковременный их перегрев. В этих случаях для обогрева применяют промежуточные теплоносители, которые сначала нагреваются топочными газами, а затем передают воспринятое тепло обрабатываемым материалам.

В качестве промежуточных теплоносителей применяют минеральные масла, перегретую воду, высокотемпературные органические теплоносители, расплавленные смеси солей и др.

Нагревание топочными газами через жидкостную баню относится к простейшим способам нагревания промежуточными теплоносителями. В этом случае  аппарат снабжают рубашкой, заполненной, например,  маслом. Топочные газы омывают рубашку и передают тепло маслу, а масло через стенки аппарата — обрабатываемым материалам.

Для повышения эффективности нагревания  используют установки с циркулирующим жидким промежуточным теплоносителем. Принципиальная схема такой установки показана на рис. 4.21 Жидкий теплоноситель нагревается в змеевике 2 печи 1. В результате уменьшения при нагревании удельного веса теплоносителя он перемещается  по трубопроводу вверх к обогреваемому аппарату 3. Теплоноситель проходит по змеевику, расположенному  вокруг этого аппарата, и отдает тепло нагреваемому материалу.

Рис. 4.21. Принципиальная схема     нагревательной   установки   с   естественной циркуляцией  жидкого промежуточного  теплоносителя:
1 — печь;   2 — змеевик;   3 — обогреваемый аппарат

Температура теплоносителя при этом снижается, а удельный вес увеличивается, в результате чего он стекает по трубопроводу вниз. Таким образом осуществляется замкнутая циркуляция теплоносителя.

НАГРЕВАНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ

В химической технике довольно широко применяется нагревание электрическим током в различных электрических печах. При нагревании электрическим током можно легко и очень точно регулировать процесс при равномерном обогреве.

По способу превращения электрической энергии в тепловую различают электрические печи сопротивления индукционные и дуговые. Электрические печи сопротивления делятся на печи прямого действия и печи косвенного действия.

В электрических печах прямого действия нагреваемое тело включается непосредственно в электрическую цепь и нагревается при прохождении через него электрического тока. Часто печь прямого действия представляет собой аппарат, корпус которого является одним из электродов; другой электрод размещают в аппарате. Между электродами помещают жидкие или расплавленные нагреваемые материалы.

Электрические печи сопротивления косвенного действия получили большое распространение. В них тепло выделяется при прохождении электрического тока по специальным нагревательным элементам; выделяющееся тепло передается материалу лучеиспусканием, теплопроводностью и конвекцией. В таких печах осуществляется нагревание до температур 1000—1100° С. Схема такой печи показана на рис. 4.22.

Рис. 4.22.  Электрическая печь сопротивления косвенного действия:
1 — обогреваемый    аппарат;
2 — футеровка печи; 3 — тепловая изоляция; 4 — спиральные нагревательные элементы;
5выводные электрошины.

Футеровка печи 2 выполнена из огнеупорного кирпича. В пазах футеровки уложены спиральные нагревательные элементы 4, к которым подводится ток через электрошины 5. Тепло, выделяющееся при прохождении электрического тока через спиральные нагревательные элементы, передается обогреваемому аппарату 1 лучеиспусканием и конвекцией. Тепловая изоляция В уменьшает потери тепла в окружающую среду.

Электрические индукционные печи (рис. 4. 23). Нагревание в этих печах осуществляется индукционными токами. Обогреваемый аппарат 1 является сердечником соленоида 2, охватывающего аппарат; по соленоиду пропускается переменный ток, при этом вокруг соленоида возникает переменное магнитное поле, которое индуцирует в стенках обогреваемого аппарата электродвижущую силу. Под действием возникающего вторичного тока нагреваются стенки аппарата.

Рис. 4.23.    Принципиальная   схема электрической   индукционной печи:
 1 — обогреваемый     аппарат;     2 — соленоид.

Соленоид выполняется из медной или алюминиевой проволоки, имеющей малое омическое сопротивление.

Дуговые печи. В дуговых печах применяется нагревание электрической дугой до температур 1500 – 1300 оС. Электрическая дуга возникает в газообразной среде. В дуговых печах при возникающих больших температурных перепадах невозможны равномерный обогрев и точное регулирование температуры. Дуговые печи применяются для плавки металлов, получения карбида кальция и фосфора, для переработки бытовых отходов.

Предыдущая