Современная экологическая обстановка в отдельных странах и регионах оставляет желать лучшего. Миссия нашего сайте — обеспечить русскоязычных жителей планеты Земля актуальной информацией о защите окружающей среды, экологической безопасности и экологии в целом.

Полезные ресурсы и публикации:
-

Е.П. Гора
Экология человека

Учебное пособие для вузов. – М.: Дрофа, 2007. – 540 с.

Предыдущая

Глава 3. Адаптация человека к экстремальным условиям среды

3.16. Влияние подводных погружений

3.16.2. Биологические проблемы погружения

Наиболее сложными биологическими проблемами, препятствующими в настоящее время погружению человека на большие глубины, являются проблемы преодоления нарушения функции дыхания и неврологических расстройств, возникающих при повышении давления воздуха более 6 кг/см2, т. е. на глубинах свыше 60 м.

1. Азотный наркоз. На этих глубинах при дыхании водолазов воздухом возникает состояние так называемого азотного наркоза, которое характеризуется снижением работоспособности, сонливостью, галлюцинациями, потерей ощущения времени, пространства. Большинство исследователей считают основной причиной такого состояния специфическое действие повышенного парциального давления азота, однако показано также потенциирующее влияние на формирование азотного наркоза повышенного давления кислорода, углекислого газа и общего охлаждения организма. Одним из главных факторов, способствующих накоплению углекислого газа в организме и увеличению охлаждающих свойств газов в условиях гипербарии, является повышение плотности газов, влияющее на диффузию газов в легких и теплообмен.

2. Нервный синдром высокого давления (НСВД). При замене в составе дыхательной смеси азота на менее плотный газ – гелий – удается исключить явления азотного наркоза и благодаря этому значительно увеличить глубину погружения. Однако при большой скорости погружения, на глубинах 300–350 м, у человека возникают неврологические расстройства, клиническое проявление которых отличается от состояния азотного наркоза. Эти нервные расстройства характеризуются комплексом симптомов, свидетельствующих о повышении возбудимости различных структур центральной нервной системы (тремор, гиперкинезы и др.). Возникновение состояния повышенной возбудимости в условиях гипербарии при дыхании гелиокислородными смесями известно в настоящее время под названием нервного синдрома высокого давления. Полагают, что причинами НСВД могут быть давление само по себе, действие гелия под повышенным давлением, тепловой стресс, а также накопление углекислого газа в тканях организма в условиях повышенной плотности дыхательной смеси.

На основе результатов изучения НСВД некоторые исследователи сделали вывод, что предельная глубина погружения человека при применении смесей, содержащих гелий, – 300 м, подобно тому как при дыхании газовыми смесями, содержащими азот, предельной является глубина в 60 м. Однако оказалось, что можно создать условия, отдаляющие неблагоприятное действие высокого давления. Таким образом, была обоснована возможность преодоления человеком НСВД на глубинах более 300 м. За последнее столетие удалось увеличить глубину погружения человека с 10–30 до 501 м, а продолжительность нахождения под водой – от нескольких минут до месяца.

Методы предупреждения НСВД. Для профилактики НСВД при достижении рекордной глубины погружения (610 м) французским исследователям фирмы «СОМЕХ» потребовалось столь медленно погружать водолазов, что общее время компрессии составило 264 ч.Снижение скорости компрессии при погружении на большие глубины является в настоящее время наиболее распространенным методом предупреждения развития НСВД на глубинах более 200 м.

• Однако в поисках новых методов профилактики НСВД исследования проводятся и в других направлениях. Например, значительное сокращение периода компрессии водолазов при погружении на глубины 475 м без выраженных признаков НСВД было достигнуто при использовании для дыхания газовых смесей с компонентами-антагонистами – гелий и азот в соотношении 10:1.

• Большое внимание в последнее время уделяется профилактике и терапии симптомов НСВД с помощью фармакологических средств.Применяя газы-антагонисты и фармакологические средства, удалось довести глубину погружения высших животных (приматов) без выраженных признаков НСВД до 1000 м.

• В последние годы в отделе подводной биомедицины Научно-исследовательского института гигиены водного транспорта Министерства здравоохранения РФ успешно развиваются нейрофизиологические исследования с целью выявления ранних признаков НСВД с помощью экспресс-диагностики состояния животных при разной скорости компрессии и в будущем на основе этих данныхуправления параметрами среды гипербарических камер.

• Многие исследователи полагают, что основную роль в решении проблемы преодоления НСВД будет играть отбор и тренировкалюдей, наиболее устойчивых к воздействиям гипербарии.

• Исследование механизмов развития и путей профилактики НСВД в настоящее время достаточно быстро прогрессирует. Если проблема преодоления НСВД будет решена, то откроются реальные возможности погружения человека на большие глубины с использованием в качестве среды для дыхания газовых смесей с гелием. До недавнего времени такой прогноз был невозможен из-за отсутствия убедительных экспериментальных данных о возможностях преодоления человеком другого физиологического барьера –высокой плотности газовой смеси. Предполагалось, что функция дыхания человека и в состоянии покоя, и особенно при физических нагрузках, при увеличении плотности газовой среды более чем в 10 раз относительно обычной не сможет обеспечить адекватный газообмен. Такой величины плотность воздуха достигает при погружении человека на глубину 100 м, а плотность гелиокислородных смесей – при погружении на глубину 600 м.

На основании данных о физических закономерностях диффузии газов в условиях повышенной плотности, а также результатов экспериментальных исследований, была сформулирована теория, согласно которой гипоксические состояния в условиях гипербарии связаны с недостаточностью функции дыхания. Однако исследования, в которых водолазам предлагалось во время пребывания в камере при давлении 37 кг/см2 переключаться на дыхание газовыми смесями, содержащими неон, показали отсутствие гипоксических состояний как в условиях покоя, так и при тяжелых мышечных нагрузках. В этих исследованиях при дыхании газовыми смесями, содержащими неон, плотность среды была увеличена более чем в 28 раз по сравнению с обычной. Таким образом, были смоделированы возможности респираторной системы человека успешно обеспечивать газообмен при плотности дыхательной смеси, эквивалентной той, которая возникает при дыхании гелиокислородными смесями на глубине 1500 м.

3. Токсическое действие кислорода при гипербарии. До настоящего времени это остается очень важной и сложной проблемой. Повышенное содержание кислорода в дыхательных смесях водолазов и кессонных рабочих впервые применил П. Бер. Гипероксические смеси он использовал для профилактики и лечения декомпрессионных расстройств, возникающих после работы в среде повышенного давления. В дальнейшем содержание кислорода в газовых смесях для дыхания водолазов стали повышать с целью снижения содержания в них инертных газов и сокращения режимов декомпрессии. Были установлены безопасные границы применения высоких концентраций кислорода при кратковременном действии повышенного давления. Однако при глубоководных погружениях и длительном пребывании человека в условиях гипербарии становится очевидным неблагоприятное влияние длительного воздействия и относительно малых величин повышения концентрации кислорода в дыхательной смеси, необходимых для обеспечения газообмена в среде повышенной плотности.

Если до последнего времени при пребывании в газовой среде в условиях гипербарии считалось приемлемым повышение содержания кислорода до 0,35 кг/см2, а при работе в водолазном снаряжении – увеличение содержания кислорода до 1 кг/см2, то в настоящее время стало ясно, что содержание кислорода в среде для дыхания водолазов должно быть максимально приближено к нормальному. Было показано, что в результате гипероксического воздействия при гипербарии как в состоянии покоя, так и особенно во время мышечной деятельности возникают гиперкапния и дыхательный ацидоз вследствие изменения чувствительности дыхательного центра к рН и СО2 в гипероксической среде при повышенном атмосферном давлении, блокирования механизма элиминации СО2 гемоглобином и снижения эффективности кровообращения в легких. Таким образом, один из главных вопросов, требующих своего разрешения в настоящее время, – определение нижней границы токсического действия кислорода, особенно при длительном воздействии среды при повышенном атмосферном давлении. В этом плане перспективным направлением исследований является изучение возможностей ферментных систем и биологических антиоксидантов.

4. Нарушение температурного гомеостаза. Другой физиологический барьер, препятствующий погружению человека на большие глубины, – обеспечение температурного гомеостаза организма при погружении в барокамере, и особенно при выходе водолазов в окружающую толщу воды. В настоящее время известно, что по мере повышения давления зона температурного комфорта все более сужается, по величине приближаясь к температуре тела.

При высоких давлениях в гелиокислородной среде для создания комфортных условий требуется значительно большее повышение окружающей температуры, чем в обычных условиях. В последнее время получены данные о неадекватности теплоощущений человека в гипербарической среде относительно реального теплового состояния организма. Также известно, что зоны комфортных температур значительно изменяются в условиях покоя или работы. Они в большей мере зависят также от уровня энергопродукции человека, т. е. от характера его деятельности.

По мере увеличения барометрического давления или глубины погружения все более актуальной становится проблема оценки истинного теплового состояния организма и оперативного регулирования микроклимата водолазных барокамер.

5. Декомпрессия. Несмотря на более чем столетнюю историю изучения, до настоящего времени эта проблема не решена. Она, по-видимому, будет актуальной до тех пор, пока применяются методы погружения человека, при которых дыхание происходит при давлениях, соответствующих глубине погружения.

Первые исследования возможностей дыхания жидкими смесями были встречены с энтузиазмом, однако до реального использования их человеком еще далеко.

В связи с этим актуальными остаются исследования, направленные на:

– сокращение периодов декомпрессии после пребывания под давлением;

– раннюю диагностику, лечение и профилактику заболеваний, связанных с декомпрессией.

В поисках способов сокращения декомпрессии исследуются механизмы сатурации и десатурации тканей организма при гипербарии с целью разработки режимов плавной, близкой к физиологической кривой десатурации.

Большое внимание уделяется исследованиям возможностей сокращения периода декомпрессии за счет периодического переключения человека на дыхание различными инертными газами.

Представляются актуальными также исследования, направленные на создание аппаратуры, позволяющей следить за ходом индивидуального процесса десатурации с последующей корректировкой режима декомпрессии. Последнее имеет также большое значение для профилактики и ранней диагностики заболеваний, связанных с декомпрессией.

Методы оптимизации реакций организма.

1. Рациональный подбор газовой среды. Как показал В. П. Николаев, важнейшие требования, предъявляемые к искусственной дыхательной среде при различных давлениях, – обеспечение нормального снабжения организма кислородом и нормальная плотность, – могут быть выполнены путем создания газовых смесей того или иного состава.

• В отношении содержания кислорода вопрос решается сравнительно просто. Обычно стремятся сохранить напряжение этого газа в среде, близким к нормальному, лишь немного увеличивая его с учетом возникающих при высоких давлениях среды нарушений диффузионного процесса. Предлагается, правда, корректировать рО2 в соответствии с метаболическими потребностями. На основе принципа максимально возможного уменьшения напряжения функций дыхания и кровообращения была создана математическая модель, позволившая вывести оптимальные концентрации вдыхаемого кислорода в газовой смеси для мышечных нагрузок разной мощности. Полученные таким путем величины рО2 расположились в диапазоне от 0,021 до 0,033 МПа. Более высокое парциальное давление кислорода в среде по расчетам должно выводить показатели легочной вентиляции и гемодинамики из пределов оптимальности. Кроме того, значительная гипероксия (рО2 выше 0,040-0,050 МПа) при длительных экспозициях оказывает известное токсическое действие.

• И снова приходится возвращаться к одной из сложнейших проблем гипербарической физиологии – затруднениям дыхания вследствие повышенной плотности дыхательной среды. Этот барьер к настоящему времени удалось значительно отодвинуть благодаря широкому применению гелиевых смесей. Еще большие преимущества сулит использование в качестве разбавителя кислорода самого легкого газа – водорода. Действительно, при давлении 0,71 МПа человек в условиях дыхания смесью 97 % Н2 и 3 % О2 мог развить максимальную вентиляцию легких более чем в полтора раза большую, чем при дыхании воздухом.

Существенно облегчалось дыхание водолазов и улучшались их эргономические показатели, как было показано в эксперименте «Гидра-4», при использовании смеси 98 % Н2 и 2 % О2 (по сравнению с аналогичной гелиокислородной смесью) под давлением 1,3–2,4 МПа. В частности, снижалось усилие, затрачиваемое на создание определенной скорости потока. В результате, например, при давлении 1,3 МПа испытуемые справлялись с 10-минутной работой мощностью до 225 Вт.

• Теоретически водородно-кислородные смеси должны позволить человеку дышать под огромным давлением – 15 МПа, которое соответствует глубине 1500 м вод. ст. Взрывоопасность таких смесей легко устраняется низкими концентрациями кислорода. Однако исследователи встретились здесь с неприятным сюрпризом: неожиданно выраженным оказалось действие высокого парциального давления водорода на ЦНС. В экспериментах с мышами, экспонированными в барокамере, заполненной водородно-кислородной смесью, у животных при давлении 6–7 МПа появлялся тремор, а при 10,9 МПа – судороги. У обезьян судороги начинались при давлении около 7 МПа.

Вместе с тем водород проявляет наркотические свойства, которые выражены у данного газа всего лишь примерно в 4 раза слабее, чем у азота. Возможно, именно по этой причине у кроликов при давлении 2,8 МПа водород вызывал снижение не только двигательной, но и дыхательной активности. Человек испытывал наркотическое состояние уже при давлении водородно-кислородной смеси всего 1,5–1,8 МПа: по свидетельству участников эксперимента «Гидра-4», этот эффект напоминал «азотный наркоз», хотя и несколько отличался от последнего – эйфория была «более приятна». Такое действие водорода удается преодолеть лишь путем добавления в дыхательную смесь других компонентов – комбинируя содержание различных газов таким образом, чтобы их неблагоприятные эффекты – наркоз и НСВД – по возможности взаимно компенсировались. Так, при давлении 3 МПа была успешно применена газовая смесь такого состава: 74 % Н2, 24 % Не, 2 % О2. Предлагают, в частности, комбинации нескольких газов – гелия и водорода с неоном и азотом, – позволяющие, кроме того, смягчить неблагоприятное влияние «легких» газов на терморегуляцию организма и разборчивость речи.

• Известно, что вследствие затруднения дыхания и (или) малой чувствительности к гиперкапническому стимулу у человека в гипербарической среде зачастую проявляется тенденция к задержке СО2 в организме. Кроме того, в условиях работы при повышенном давлении с использованием респираторной аппаратуры может повышаться концентрация двуокиси углерода. Вместе с тем гиперкапния значительно усиливает наркотический эффект высокого парциального давления азота, а также токсического действия кислорода, и это может привести к развитию порочного круга, рокового для функции дыхания и чреватого дыхательной недостаточностью. Поэтому меры по возможному предотвращению накопления СО2 в дыхательной смеси служат неотъемлемым элементом оптимизации гипербарической среды.

Устранению одышки и тем самым повышению работоспособности способствует создание небольшого положительного давления (+10 см вод. ст.) в дыхательных путях. Принципиально новым способом разгрузки дыхательной мускулатуры от тяжелой работы по преодолению сопротивления, обусловленного повышенной плотностью газовой среды, является применение искусственной или вспомогательной вентиляции легких. Пока такой способ в основном находится на стадии экспериментирования. С этой целью для опытов на лабораторных животных разработан специальный поршневой респиратор, осуществляющий вентиляцию через эндотрахеальный катетер, причем газовая смесь в фазу вдоха нагнетается в легкие, а выдох (он в полтора раза длительнее вдоха) осуществляется пассивно. Теоретически возможно использование и другого способа, основанного на создании колебаний давления в емкости (барокамере или «подводном доме»), где находится человек. Перспективность этого пути весьма вероятна.

• В настоящее время получила развитие идея создания так называемой активной газовой среды, которая стимулировала бы формирование активных адаптивных реакций организма на неблагоприятные условия. В этом плане кажется перспективным использование нестационарной искусственной атмосферы с циклично изменяющимся газовым составом. Можно думать, что исследования, развернувшиеся в этом направлении, помогут в ближайшем будущем решить данную проблему.

2. Дыхательная тренировка. Другим методом повышения толерантности организма к гипербарической среде может быть дыхательная тренировка. В условиях плотной газовой среды уменьшению затрат энергии на вентиляцию в легких способствует переход на медленное и глубокое дыхание. В частности, И. С. Бреслав (1975) показал, что обучение такому режиму дыхания позволяет успешно выполнить мышечную работу в условиях значительного сопротивления инспираторным и экспираторным потокам. Подобную тренировку проходят водолазы.

Представляется целесообразной предварительная тренировка к искусственному сопротивлению вдоху. Увеличение работоспособности дыхательных мышц получали и с помощью систематической произвольной гипервентиляции легких, особенно в сочетании с резистивной нагрузкой.

В литературе встречаются сообщения о том, что у профессиональных водолазов дыхание и без какой-либо специальной тренировки медленное и глубокое, что у них значительно больше средние легочные объемы и, наконец, что у них и в нормальных условиях ослаблена реакция дыхания на гиперкапнию – уменьшен наклон кривых (параметр Sv) роста вентиляции и окклюзионного давления в ответ на прогрессивное увеличение рСО2 и повышено пороговое значение рСО2. В связи с этим у водолазов альвеолярное напряжение двуокиси углерода выше, чем у представителей других профессий – и не только в гипербарической, но и в обычной среде, а при мышечной работе может даже превышать 80 мм рт. ст. Здесь, правда, у некоторых авторов возникает сомнение: не является ли это следствием профессионального отбора людей для работы под водой по каким-то признакам, с которыми указанные особенности связаны? Тем более что, как выяснилось, многие из этих особенностей не коррелируют с водолазным опытом. Предлагалось даже специально отбирать индивидов с уменьшенной реакцией дыхания на физическую нагрузку, поскольку высокий уровень легочной вентиляции в плотной газовой среде, естественно, резко увеличивает энерготраты на работу дыхательных мышц, а снижение усилия, затрачиваемого этими мышцами, уменьшает выраженность одышки.

По другому пути пошли исследователи, в течение 5 месяцев тренировавшие респираторную мускулатуру водолазов с помощью дыхания через добавочное сопротивление (диафрагма с отверстием 8–6,5 мм): тренированные таким способом люди показали в условиях давления гелиокислородной смеси 4,6 МПа более высокие уровни легочной вентиляции, чем нетренированные.

И все же по крайней мере часть функциональных сдвигов в системе дыхания является несомненным результатом систематического воздействия факторов гипербарии. Сюда можно отнести уменьшение максимальных экспираторных потоков с одновременным увеличением форсированной жизненной емкости легких, повышение силы дыхательных мышц и т. д. Правда, со временем подобные перестройки могут терять свое приспособительное значение и приобретать патологический характер.

Некоторые исследователи наблюдали в ходе пребывания в гипербарической среде повышение максимальной произвольной вентиляции. Это явление частично можно объяснить уменьшением сопротивления дыханию вследствие бронходилятации, рефлекторно наступающей при тяжелой работе и гиперкапнии, а частично – тренировкой дыхательной мускулатуры. В свою очередь, увеличение функционального резерва аппарата дыхания оказывает положительное влияние на работоспособность. Мы упоминали «азотный наркоз» в качестве неблагоприятного фактора, который может усугубить эффекты, связанные с затруднением дыхания из-за повышенной плотности дыхательной среды. При повторных экспозициях влияние этого фактора на физиологические функции удается значительно ослабить: улучшается способность человека к самоконтролю. В условиях использования гелиокислородных дыхательных смесей под высоким давлением водолазы научаются подавлять мышечный тремор. Вместе с тем для работы в таких условиях предлагалось отбирать индивидов, мало подверженных проявлениям нервного синдрома высоких давлений. Кроме того, возбуждающее действие этого синдрома на ЦНС может способствовать повышению активности центрального дыхательного механизма. То же может происходить в начальных стадиях «азотного наркоза». Аналогичное действие могут оказывать факторы неспецифического характера – стрессорное состояние, эмоциональный подъем, сопряженный с пребыванием в необычных условиях, хотя в некоторых случаях те же факторы могут отрицательно сказаться на работоспособности. В этом, надо думать, заключается причина того, что МВЛ обычно оказывается выше расчетной для данной плотности. Сообщалось, что выше расчетной оказывались и максимально выполнимые кратковременные мышечные усилия нагрузки.

Таким образом, профессиональный отбор и соответствующая подготовка человека могут повысить его устойчивость к неблагоприятным эффектам гипербарии.

Предыдущая