20.04.2024

Глава 1. Производство и окружающая среда

Л.И. Бондалетова
Промышленная экология

Учебное пособие / Том. политехн. ун-т. — Томск, 2002. — 168 с.

Предыдущая

Глава 1. Производство и окружающая среда

1.3. Химико-технологическая система

1.3.3. Энергетические ресурсы химико-технологической системы

1.3.3.1. Энергия в химическом производстве

В химическом производстве осуществляются процессы, связанные либо с выделением, либо с затратой, либо со взаимными превращениями энергии. Энергия затрачивается не только непосредственно на проведение химических реакций, но и на транспортировку материалов, дробление, фильтрацию, сжатие газов и т. д.

Энергоемкость производства — расход энергии на получение единицы продукта – один из важнейших показателей эффективности производства. Имеются производства, отличающиеся высокой энергоемкостью, и производства с относительно небольшим потреблением энергии. Так, на производство 1 т алюминия необходимо 18 000-20 000 кВт×ч  энергии, а на производство минеральных удобрений (суперфосфата) – 2-10 кВт×ч. Энергию выражают в различных единицах: кДж, кВт.ч, в том числе в единицах условного топлива (1 кг твердого топлива или 1 м3 газообразного с теплотой сгорания 29,3 МДж).

Несмотря на наличие производств, потребляющих небольшие количества энергии на тонну продукции, крупные масштабы современных химических комбинатов и заводов обусловливают возрастающую потребность во всех видах энергии.

Виды энергии

Наиболее широкое практическое применение в промышленности имеют электрическая, ядерная, тепловая, химическая и др. виды энергии. Вид применяемой энергии зависит от технологического процесса.

Электрическая энергия ‑ наиболее универсальный вид энергии. Источником ее является энергия воды на ГЭС и превращение тепловой энергии, полученной в результате сгорания топлива (ТЭЦ) или в результате ядерных реакций (АЭС), в механическую, а затем механической в электрическую. Электроэнергия на химических предприятиях используется для осуществления электрохимических (электролиз растворов и расплавов), электротермических (плавление, нагревание, синтезы при высоких температурах и т. д.), электромагнитных процессов. В промышленности нашли применение процессы, связанные с использованием электростатических явлений (осаждение пылей и туманов, электрокрекинг углеводородов и др.), электронноионные явления, применяемые для контроля и автоматизации химических производств. Особенно широко в химической промышленности используется превращение электрической энергии в механическую, которая необходима главным образом для физических операций ‑ дробления, измельчения, смешения, центрифугирования, работы вентиляторов, компрессоров, насосов и пр.

Тепловая энергия в химической промышленности применяется, во-первых, для осуществления разнообразнейших физических процессов, не сопровождающихся химическими реакциями ‑ нагрева, плавления, сушки, выпарки, дистилляции и т. п. Кроме этого, большое количество тепловой энергии затрачивается на нагрев реагентов для проведения эндотермических химико-технологических процессов.

Внутриядерная энергия, выделяемая при различных превращениях атомных ядер или при синтезе ядер водорода в ядра гелия, используется для производства электрической энергии на атомных электростанциях. Большое распространение получают радиационно-химические процессы, в которых радиоактивные излучения используются для осуществления химических реакций.

Химическая энергия, выделяющаяся в результате экзотермических химических реакций, служит ценным источником тепла для обогрева реагентов, используемых для проведения реакции. Химическая энергия применяется в гальванических элементах и аккумуляторах, где она преобразуется в электрическую.

Световая энергия используется для осуществления различных фотохимических реакций: синтеза хлористого водорода из элементов, галоидирования органических соединений и других процессов. Фотоэлектрические явления, в которых происходит превращение световой энергии в электрическую, нашли применение для автоматического контроля и управления технологическими процессами.

 

Источники энергии, используемой на промышленных предприятиях, могут быть различными. Они могут оцениваться по характеру энергетических ресурсов, энергетической ценности, запасам.

По характеру энергетические ресурсы делятся на невозобновляемые и возобновляемые. К невозобновляемым источникам энергии относятся уголь, нефть, сланцы, природный газ, которые после их использования не могут быть воспроизведены. Гидроэнергия, растительное топливо, энергия ветра, солнечная энергия относятся к непрерывно возобновляемым источникам энергии.

Энергетическая ценность отдельных источников энергии определяется количеством энергии, которое можно получить при их использовании. Для топлив, например, энергетическая ценность характеризуется количеством квт×ч, получаемых при полном использовании теплоты сгорания одного килограмма или кубического метра данного топлива, например энергетическая ценность каменного угля составляет 8,0 кВт×ч/кг, а природного газа – 10,6 кВт×ч/м3.

Практическое использование энергетических ресурсов определяется прежде всего запасами, а также их географическим положением, доступностью использования, возможностью трансформации энергии и передачи ее на расстояния и рядом других факторов.

Размещение химических предприятий, отличающихся большими масштабами потребления энергии, зависит от наличия дешевого топлива и электрической энергии. В этой связи следует отметить роль местных видов топлива, которые, как правило, обходятся дешевле дальнепривозных. Однако в некоторых случаях использование транспортируемого на дальние расстояния по трубопроводам газа более рентабельно, чем использование местных топлив.

1.3.3.2. Рациональное использование энергии

В химических производствах, потребляющих большие количества энергии, энергетические затраты влияют на технико-экономические показатели процессов. Критерием экономичного использования энергии является коэффициент использования энергии.

Коэффициентом использования энергии называется отношение количества энергии, которое теоретически требуется затратить на получение весовой (или объемной) единицы продукта, к количеству практически затраченной энергии. Во многих производствах эти коэффициенты очень низки, что свидетельствует о непроизводительном расходовании энергии. Ограниченность энергетических ресурсов, в ряде случаев высокая стоимость энергии ставят задачу экономного и рационального ее использования.

На химических предприятиях из всех видов потребляемой энергии первое место принадлежит тепловой энергии.

Степень использования тепла в химико-технологическом процессе выражается тепловым коэффициентом полезного действия, под которым понимается отношение количества тепла, использованного непосредственно на осуществление основных химических реакций, к общему количеству затраченного тепла. Тепловой КПД является частным случаем коэффициента использования энергии. К сожалению, в химических процессах большое количество тепла теряется с удаляемыми из аппаратов продуктами реакции, отходящими газами и в окружающую среду.

Например, в печи для обжига известняка тепло, получаемое от сгорания топлива и внесенное с шихтой, расходуется: 1) на испарение влаги; 2) на разложение карбонатов; 3) с отходящими газами; 4) с выгружаемой известью; 5) через стенки печи в окружающую среду. Вторая статья расхода, характеризующая полезное использование тепла, составляет 64-65% от всего затраченного тепла, т.е. Т=64-65 %. С отходящими газами теряется 18-20 %, с выгружаемой известью 2-5 % и в окружающую среду 5-6 % тепла. В ряде случаев потери тепла с продуктами реакции значительно больше.

Тепло продуктов реакции или отходящих газов (вторичные энергетические ресурсы) можно использовать для предварительного нагрева материалов, поступающих в реакционный аппарат. Тепловые потери в окружающую среду уменьшают, во-первых, тепловой изоляцией аппаратуры и, во-вторых, конструктивное оформление и габариты аппаратуры выбирают так, чтобы иметь минимальную поверхность теплоотдачи в окружающую среду.

При рациональном использовании тепловой энергии экономятся огромные количества топлива. Следует подчеркнуть, что нельзя рассматривать топливо в современных условиях только как источник тепловой энергии. Уголь, торф, сланцы, нефть, природные газы являются ценнейшим и важнейшим сырьем химической промышленности. Задача заключается в комплексном энерго-химическом использовании топлива и как сырья для химической промышленности, и как источника получения энергии.  Таким образом, решение проблем рационального использования энергии, уменьшения потерь тепла в окружающую среду и использование так называемых вторичных ресурсов имеет большое значение.

 

1.3.3.3. Вторичные энергетические ресурсы

Вторичные энергетические ресурсы (ВЭР) ‑ это энергия различных видов, покидающая технологический процесс или установку, использование которой не является обязательным для осуществления основного технологического процесса.

В настоящее время особенно велики потери теплоты на электростанциях, в металлургической, химической, нефтедобывающей и нефтеперерабатывающей промышленности, в сельском хозяйстве. Теплота уносится также с вентиляционным воздухом, с канализационными и бытовыми стоками. Согласно расчетам, из 1,7 млрд т у. т., расходуемого в стране за год, полезно используется примерно 700 млн т. Утилизация ВЭР позволит получить большую экономию топлива и существенно уменьшить капитальные затраты на создание соответствующих энергоснабжающих установок, так как при одинаковом эффекте затраты на улучшение использования энергоресурсов в 1,5-2 раза ниже затрат на добычу топлива. Рациональное и возможно более полное использование вторичных энергоресурсов дает большую экономию материальных, денежных и трудовых затрат, обеспечивает снижение выбросов вредных веществ, в том числе и тепловых.

ВЭР разделяются на три основные группы: избыточного давления, горючие и тепловые.

ВЭР избыточного давления ‑ это потенциальная энергия покидающих установку газов, воды, пара с повышенным давлением, которая может быть еще использована перед выбросом в атмосферу. Основное направление использования таких ВЭР ‑ силовое (для получения электрической или механической энергии).

Горючие ВЭР ‑ это горючие газы и отходы одного производства, которые могут быть применены непосредственно в виде топлива на других производствах. К ним можно отнести: щепки, опилки, стружку (в деревообрабатывающей промышленности); твердые и жидкие топливные отходы химической и нефтеперерабатывающей промышленности; доменный газ (в металлургической промышленности). Главная трудность использования горючих ВЭР ‑ примеси, которые могут загрязнять окружающую среду, вызывать коррозию котельной аппаратуры, осаждаться на поверхности водогрейных труб.

Тепловые ВЭР ‑ это физическая теплота отходящих газов основной и побочной продукции производства; золы и шлака, горячей воды и пара; рабочих тел систем охлаждения технологических установок. Тепловые ВЭР используют для получения тепла, непосредственно передавая его соответствующим теплоносителям (подогревают потоки, вырабатывают пар). В зависимости от температуры их подразделяют на высоко- и низкопотенциальные.

Высокопотенциальные тепловые ВЭР (с температурой выше 120 °С) используют для выработки пара в котлах-утилизаторах.

Низкопотенциальные тепловые ВЭР (с температурой 50-120 °С) используют в основном для работы энергетических установок (подогрев воды для котельных установок). Основные трудности их использования — большие капитальные затраты из-за малой движущей силы (температурной) для передачи тепла и загрязнения примесями. Эффективным является использование низкопотенциальных тепловых ВЭР для получения искусственного холода в абсорбционных холодильных машинах.

Предыдущая

Добавить комментарий