29.03.2024

Глава 3. Адаптация человека к экстремальным условиям среды

Е.П. Гора
Экология человека

Учебное пособие для вузов. – М.: Дрофа, 2007. – 540 с.

Предыдущая

Глава 3. Адаптация человека к экстремальным условиям среды

3.4. Гравитация

3.4.2. Реакции организма на невесомость

Первые научно-теоретические разработки вопросов, связанных с оценкой возможного влияния на организм человека отсутствия силы тяжести, были проведены К. Э. Циолковским (1883, 1911, 1919). В трудах этого выдающегося ученого, признанного «отцом космонавтики», выдвигаются предположения о том, что при невесомости изменится двигательная функция, пространственная ориентировка, могут возникнуть иллюзорные ощущения положения тела, головокружения, приливы крови к голове. Длительное отсутствие тяжести, по его мнению, может постепенно привести к изменению формы живых организмов, утрате или перестройке некоторых функций и навыков. Циолковский проводил аналогии между состоянием невесомости и условиями, с которыми человек сталкивается на Земле (погружение в воду, пребывание в постели). Он указывал, в частности, что поскольку постоянное пребывание в постели может быть вредным для здоровых людей, то и в «среде без тяжести» можно ожидать развития аналогичных нарушений. И хотя автор предполагал возможность приспособления человека к этому состоянию, «на всякий случай» он предусматривал необходимость создания искусственной тяжести за счет вращения космического корабля. Трудами Циолковского, по существу, были предопределены основные направления экспериментальных исследований влияния невесомости на биологические объекты (изучение сенсорных, двигательных, вегетативных реакций), заложены отправные положения, необходимые для понимания механизмов возникновения тех или иных изменений в условиях невесомости, определен наиболее радикальный путь к предупреждению такого рода расстройств и указаны возможные способы имитации невесомости в наземных условиях.

Началом систематических экспериментальных исследований влияния невесомости на биологические объекты было осуществление у нас и в США (начиная с 1951) серии вертикальных запусков ракетных систем с подопытными животными на борту. Биологические исследования были затем продолжены с помощью искусственных спутников Земли. Результаты исследований, выполненных при суборбитальных и орбитальных полетах подопытных животных, явились той основой, на которой был сформулирован вывод о возможности осуществления космического полета человека. В порядке подготовки к этому важному и ответственному событию были проведены исследования влияния на организм человека кратковременной (до 45 с) невесомости, воспроизводимой при полетах самолета по параболической траектории. После выдающегося орбитального полета Ю. А. Гагарина 12 апреля 1961 года начался период бурного освоения человеком космического пространства. Возможности проведения медицинских и физиологических исследований влияния невесомости на организм человека существенно возросли, однако одновременно повысилось и значение прикладных медицинских задач, связанных с прогнозированием, обеспечением безопасности и эффективности еще более продолжительных перспективных полетов.

Последовательное увеличение продолжительности космических экспедиций само по себе создает достаточно хорошие предпосылки для суждения о возможности и безопасности очередных более длительных полетов. Однако этот путь, по-видимому, не может быть единственным в формировании прогноза. Для него, в частности, характерны и довольно существенные ограничения, связанные с небольшим количеством наблюдений, методов исследования, отсутствием опережающей информации, а следовательно, и наличием известного риска при планировании длительных полетов. Кроме того, в этом случае неизбежны и некоторые другие недостатки: отставание в создании защитных мероприятий, большие затраты времени, неэкономичность. Указанные ограничения удачно восполняются за счет использования чисто экспериментального подхода к изучению проблемы невесомости.

У нас в стране широко развернута экспериментальная работа с лабораторным моделированием невесомости (погружение в воду, пребывание в горизонтальном положении, ограничение подвижности). В такого рода экспериментах изучаются эффекты, обусловленные снижением величины и отсутствием колебаний гидростатического давления крови, уменьшением весовой нагрузки на опорные структуры, состоянием гиподинамии, т. е. теми факторами, значение которых в развитии нарушений, обусловленных влиянием невесомости на организм, по-видимому, является ведущим.

С помощью иммерсионной модели достаточно оперативно воспроизводятся сдвиги со стороны водно-солевого обмена, ортостатической устойчивости и физической работоспособности. Однако для решения вопроса о влиянии на организм длительной невесомости иммерсионная модель неприемлема. В значительно большей степени этим задачам отвечает состояние гиподинамии в сочетании с горизонтальным положением. Оно в достаточной мере воспроизводит первичные реакции, связанные со многими сторонами действия невесомости, и не содержит сколько-нибудь выраженных побочных эффектов, способных существенно исказить течение основного синдрома. В силу этого названная модель, очевидно, не вносит каких-либо ограничений и в сроки проведения эксперимента, кроме, естественно, тех, которые вытекают из особенностей развития воспроизводимого состояния. С экономической точки зрения путь, основанный на лабораторном моделировании невесомости, является вполне приемлемым, что, в свою очередь, создает предпосылки для проведения многочисленных и разнообразных серий экспериментов и накопления статистического материала. В широко практикуемых экспериментах на животных изучается влияние гиподинамии на клеточные, тканевые структуры, обменные процессы, системные сдвиги, на устойчивость к различным экстремальным воздействиям.

Разумеется, методы экспериментального моделирования невесомости позволяют получить далеко не полный эквивалент реального фактора. Они не воспроизводят, в частности, специфических для невесомости сенсорных реакций. Тем не менее приемлемость методов лабораторного моделирования подтверждается большим количеством сходных черт между реакциями на реальную и имитированную невесомость. Так, прогнозы, сделанные на основе экспериментов с лабораторным моделированием невесомости, в основном подтвердились результатами проведенных космических полетов, что свидетельствует о достаточной адекватности описанных моделей состоянию невесомости. Важно, что модели могут использоваться также в качестве основы при решении таких практически важных вопросов, как разработка и испытание средств профилактики неблагоприятного влияния невесомости на организм человека.

Таким образом, сложная проблема изучения невесомости как экстремального фактора, реально невоспроизводимого в наземных условиях, основывается на синтезе прямых, т. е. получаемых при космических полетах человека, и косвенных экспериментальных данных. Такого рода синтез представляет собой наиболее плодотворный путь, способный обеспечить прогресс в деле успешного освоения человеком космического пространства.

Механизмы адаптации к невесомости. В настоящее время накоплен обширный экспериментальный материал, характеризующий многообразные реакции организма человека на невесомость и ее лабораторные модели. Существует и целый ряд концепций относительно вероятных механизмов формирования этих реакций. Наиболее распространенные из них связывают возникновение всей совокупности изменений со стороны организма с отсутствием весовой нагрузки на костно-мышечную систему, а также с первичным влиянием невесомости на функцию афферентных систем и распределение жидкой среды в организме.

Переход к состоянию невесомости, по существу, означает функциональную деафферентацию обширных рецепторных полей, которые в наземных условиях реагируют на гравитационные силы и в значительной мере обеспечивают функцию пространственного анализа, пространственной координации движений, а также регуляцию постоянства внутренней среды организма. К числу этих рецепторных полей в первую очередь относятся:

– отолитовая часть вестибулярного аппарата, которая является специфическим гравирецептором и обеспечивает восприятие гравитационной вертикали;

– кожа;

– проприоцептивный аппарат опорно-двигательной системы. Значение баро-, механо– и волюморецепторов сосудистого русла и внутренних полостей, заполненных подвижными органами, в создании специфического для действия силы тяжести комплекса ощущений еще недостаточно изучено. Однако нельзя сомневаться в участии этих видов рецепции в общей реакции на невесомость и формировании тех новых взаимоотношений, которые устанавливаются между афферентными системами в этом состоянии.

Изменения в деятельности афферентных систем состоят в возникновении специфических субъективных ощущений («легкости тела», падения, подъема, переворота, вращения), которые характеризуются различной выраженностью, длительностью и приобретают разнообразную эмоциональную окраску (страх, радость) в зависимости от индивидуальных особенностей, опыта и тренированности испытуемого. Основное содержание этих ощущений состоит в утрате представлений о направлении гравитационной вертикали и пространственном положении тела, в особенности при отсутствии зрительного и тактильного контроля. Хотя зрительный анализатор в безопорном состоянии остается единственным информационным каналом, обеспечивающим пространственную ориентировку, он также может оказаться, особенно в первоначальный период пребывания в невесомости, источником возникновения иллюзорных ощущений пространственного расположения окружающих предметов, что выражается в кажущемся смещении рассматриваемых объектов и «промахивании» при попытках их достижения.

Изменение взаимоотношений в деятельности афферентных систем в состоянии невесомости рассматривается также в качестве одной из возможных причин возникновения симптомов, характерных для болезни движения или укачивания.

Существует, в частности, мнение, что длительное постоянное возбуждение отолитовых рецепторов вестибулярного аппарата подавляет реакции с полукружных каналов. С этой точки зрения функциональная деафферентация отолитового прибора должна способствовать растормаживанию рефлексов с полукружных каналов и повышать их чувствительность к воздействию угловых ускорений.

К объяснению вегетативных проявлений вестибулярного происхождения может быть привлечен также закон Вебера – Фехнера.Поскольку постоянно действующая величина адекватного раздражителя вестибулярного аппарата при переходе к невесомости уменьшается, его чувствительность к ускорениям в этом состоянии в соответствии с законом Вебера – Фехнера должна быть выше, чем в наземных условиях. Действительно, резкие движения головой и туловищем в начале полета вызывали у некоторых космонавтов головокружение и другие сенсорные реакции, которые на Земле обычно проявлялись при более сильном воздействии, например при вращении на кресле Барани. Впрочем, возникновение тошноты и рвоты, характерных для болезни движения, может в состоянии невесомости определяться не только характером вестибулярной афферентации. Существует предположение, что необычное распределение газов и жидкостей в различных областях пищеварительного тракта в невесомости может провоцировать тошноту. В экспериментах на делабиринтированных собаках показано, что возбудимость рвотного центра при действии угловых ускорений может повышаться и за счет интероцептивной афферентации, исходящей от органов брюшной полости. Была также выдвинута гипотеза об участии гемодинамического механизма, связанного с увеличением кровенаполнения черепно-мозговых сосудов, в генезе вестибуловегетативных расстройств.

Со стороны соматического компонента вестибулярной реакции (нистагм) и порогов чувствительности вестибулярного аппарата к неадекватным раздражениям (к постоянному току) в условиях длительной невесомости не было выявлено существенных отличий от данных предполетного периода. Вместе с тем при кратковременной невесомости на самолете нистагм в ответ на вращательную пробу и электростимуляцию подавлялся. На основании этих фактов исследователи рассматривают невесомость как своеобразный «минус-раздражитель» отолитового аппарата. Отсутствие калорического нистагма в невесомости имеет иную причину и связано с тем, что конвекция любых жидкостей, в том числе и эндолимфы, в этом состоянии физически невозможна.

Полеты на орбитальных станциях, проведенные в последние годы, показали, что по мере адаптации к невесомости нарушения, связанные с действием ускорений, возникающих при перемещении космонавтов в кабине и при исследованиях на вращающемся кресле, полностью исчезают. С другой стороны, появились сообщения о возникновении вестибулярных расстройств после завершения длительных космических полетов, в то время как изменения со стороны пороговой чувствительности отолитового аппарата к линейным ускорениям отсутствовали. Таким образом, продолжение исследований по оценке вестибулярной функции в космическом полете остается актуальной задачей, в особенности применительно к разработке систем искусственной весомости.

Одним из проявлений уравновешивания организма с внешней средой в состоянии невесомости может быть изменение функционального состояния рецепторных образований. Нейрофизиологическая основа этого процесса может состоять в развитии адаптации рецепторов или изменении их «настройки» в результате центробежных влияний. Если допустить, что длительное отсутствие гравитационных стимулов также сопровождается изменением чувствительности соответствующих рецепторных образований, то возникает вопрос: в какой мере обратимы эти изменения? Стойкие изменения функционального состояния рецепторов способны неблагоприятно отразиться на переносимости стрессовых воздействий, характерных для космического полета, и на течении послеполетного периода.

Анализ особенностей процесса реадаптации у космонавтов, а также наблюдения, проведенные при длительной гиподинамии, свидетельствуют об изменениях со стороны общей реактивности, регуляции вегетативных и двигательных функций. Происхождение упомянутых сдвигов трудно связать исключительно с изменениями рецепторного, афферентного звена рефлекторной дуги, но в принципе такая связь возможна.

Несовершенством обратной афферентации можно объяснить нарушения координации движений в статике и динамике после окончания космических полетов.

С изменением функционального состояния рецепторов можно связать и некоторые особенности регуляции водного обмена у космонавтов в полете и послеполетном периоде.

На функциональное состояние организма в длительном космическом полете немаловажное влияние может оказать также уменьшение потока внешних раздражений, связанное с отсутствием гравитационных стимулов и с однообразными условиями обитания в замкнутом пространстве кабины космического корабля, недостатком привычных колебаний параметров внешней среды и т. д. Хотя опыт проведенных космических полетов не выявил отчетливых ограничений, вытекающих из этого фактора, при дальнейшем увеличении продолжительности он может привести к изменениям общего психического тонуса, эмоционального настроя, самочувствия и работоспособности космонавтов. Так, в исследованиях с длительной гиподинамией, при которых однообразие внешней обстановки, пребывание в вынужденной позе, существенное изменение стереотипа повседневной деятельности также являлись причиной обеднения афферентного фона, довольно часто отмечается возникновение неустойчивого настроения испытуемых, раздражительности, навязчивых идей, конфликтных ситуаций, а в отдельных случаях и психических расстройств. Естественно, в генезе этих реакций нельзя исключить значения типологических особенностей испытуемых и разнообразных эндогенных факторов.

Таким образом, первичное влияние невесомости на функцию афферентных систем приводит к развитию многообразных сенсорных, двигательных, вегетативных и психологических реакций, отдельные из которых способны снизить эффективную роль человека в выполнении космической программы и осложнить течение периода реадаптации. Значение изменений со стороны интероцептивной афферентной системы более подробно будет рассмотрено в связи с описанием других первичных механизмов влияния невесомости на организм.

Распределение жидкости в системе эластичных резервуаров определяется законами гидростатики. Гидростатическое давление, величина которого пропорциональна высоте столба жидкости и ее удельному весу, воздействуя на стенки резервуара, вызывает их растяжение и соответствующее перераспределение объемов жидкости вниз. Такого рода закономерность проявляется и в распределении биологических жидкостей (главным образом, крови) у человека и животных в наземных условиях. Пребывание в вертикальном положении сопровождается относительным депонированием некоторого объема крови в нижней половине тела, снижением венозного возврата к сердцу, систолического выброса и комплексом соответствующих компенсаторных реакций.

Ходьба, бег, прыжки, изменения положения тела в пространстве меняют величину и направление гравитационных смещений крови у человека, благодаря чему организм находится в состоянии постоянной готовности к включению компенсаторных реакций, связанных с действием гидростатического фактора. Постоянное пребывание в горизонтальном положении уменьшает величину и изменяет направление гидростатических сил, а погружение в воду способствует их нейтрализации. Поскольку вода через мягкие ткани оказывает эквивалентное противодавление на сосудистые стенки, депонирования крови в нижней половине тела даже при вертикальной позе не происходит. В состоянии невесомости действие гидростатического давления снимается полностью.

Результатом всех этих процессов оказывается перемещение некоторого объема крови из нижней половины тела в верхнюю. Существует мнение, что перераспределение жидкой среды в организме является наиболее важной биологической реакцией на гравитацию. Многие космонавты испытывали в состоянии невесомости ощущение прилива крови к голове. Оно уменьшалось при «закрутке» корабля, если космонавт располагался вдоль радиуса вращения и головой по направлению к его центру. Гиперемия кожных покровов лица, развитие отечности носоглотки и тканей лица в условиях невесомости также могут быть поставлены в связь с перераспределением крови. Электроплетизмографические исследования, проведенные при кратковременной невесомости на самолете, выявили увеличение кровенаполнения сосудов органов грудной клетки. В полете экипажей на орбитальных станциях обнаружено повышение давления в системе яремных вен, а также развитие венозного застоя в бассейне черепно-мозговых сосудов.

Объективные признаки перераспределения крови регистрируются и в экспериментах с имитацией невесомости. Например, при длительном пребывании на постельном режиме выявлена застойная дилятация сосудов глазного дна.

Относительное возрастание центрального объема крови при снижении гидростатического давления составляет у человека, по данным Д. Гауэра и соавторов, приблизительно 400 см2. Оно является пусковым механизмом рефлекса, приводящего к изменениям водно-солевого обмена, потере плазмы и уменьшению общего объема циркулирующей крови до величины, при которой заполнение кровью центральных вен возвращается к гомеостатической норме. Рецепторная зона этого рефлекса локализована преимущественно в области левого предсердия. Д. Гауэр и В. Генри установили, что дыхание под отрицательным давлением и раздувание левого предсердия за счет сужения просвета митрального клапана резиновым баллоном увеличивают диурез у собак с 5 мл за 10 мин в норме до 13–21 мл за 10 мин. Импульсация от обнаруженных ими волюморецепторов левого предсердия поступает по вагусу в продолговатый мозг, а затем в супраоптическую область гипоталамуса, затем в нейрогипофиз, где осуществляется секреция антидиуретического гормона. Последний накапливается в нейрогипофизе и при поступлении в кровь, помимо антидиуретического, оказывает вазопрессорное действие, поэтому его называют также вазопрессином. Растяжение левого предсердия при увеличении венозного притока к сердцу тормозит секрецию антидиуретического гормона, что ведет к уменьшению реабсорбции воды и натрия в почках, возрастанию диуреза и потере плазмы. Большое значение в регуляции водно-солевого равновесия придается также механизму осморецепции и выработке в коре надпочечников альдостерона, который усиливает реабсорбцию натрия. Регуляция секреции альдостерона осуществляется, в частности, при участии рецепторов правого предсердия. Вместе с тем в конкуренции объемного и осмотического механизмов регуляции массы циркулирующей крови первому придается более важное значение, поскольку при нарушении постоянства ее объема осмотический механизм может уже не проявлять себя. Гормональные изменения, отмеченные в многосуточном космическом полете, включали в себя уменьшение концентрации в моче антидиуретического гормона, возрастание активности ренина в плазме крови и концентрации альдостерона в моче.

В экспериментах с лабораторной имитацией невесомости потеря плазмы составляла от 300 до 800 мл. При проведении орбитальных полетов у космонавтов также обнаруживалось снижение объема циркулирующей плазмы на 100–500 мл.

Одновременно с полиурией, обусловленной возрастанием центрального объема крови, судя по опыту лабораторных исследований и космических полетов, уменьшается жажда и устанавливается отрицательный водный баланс. Процессы перестройки водно-солевого обмена и развитие относительной дегидратации протекают довольно быстро, преимущественно в течение первых двух суток воздействия, а затем водный обмен устанавливается на новом, более низком балансовом уровне. Уменьшаются интенсивность диуреза, количество потребляемой жидкости, а также скорость обновления воды.

Обусловленное потерей плазмы сгущение крови сопровождается возрастанием показателей гематокрита и вязкости, хотя в дальнейшем может происходить и уменьшение массы эритроцитов. В результате соотношение форменных элементов крови и плазмы нормализуется. Снижение общей массы гемоглобина, отмеченное при послеполетном обследовании космонавтов, обусловлено подавлением эритропоэза и, как показали лабораторные исследования с имитацией невесомости, становится более выраженным, по мере того как возрастает перераспределение крови из нижней половины тела в верхнюю. В поздние сроки экспериментального моделирования невесомости намечается тенденция к восстановлению объема циркулирующей крови. Механизм этого процесса неясен, однако его можно связать с развитием вторичного альдостеронизма или с изменением других механизмов регуляции водного обмена.

Потеря жидкости служит одной из причин снижения веса тела, которое неоднократно регистрировалось в послеполетном периоде. Величина этого снижения составляла в среднем от 2 до 5 % от исходного веса тела, не зависела от продолжительности воздействия и относительно быстро компенсировалась за счет увеличенного потребления воды и пониженного диуреза. Отмечено, правда, что по мере увеличения продолжительности полетов восстановление веса происходило медленнее, что, вероятно, связано с изменением структуры потерь веса и увеличением доли тканевых потерь.

Патогенетическая связь описанных изменений водного обмена с гидростатическим фактором была подтверждена также исследованиями, проведенными на иммерсионной модели невесомости. Оказалось, что уменьшение величины компенсирующего противодавления воды на нижнюю часть тела, при котором действие гидростатического давления крови восстанавливалось, уменьшало диурез, увеличивало жажду, а тем самым эффективно предотвращало дегидратацию и снижение веса тела. Кроме того, было показано, что положение сидя или подъем головного конца кровати на 6° по отношению к горизонтали предотвращали развитие отрицательного водного баланса или потерю общей воды в организме, которые обычно возникают при имитации невесомости методом антиортостатической гиподинамии.

Одним из важных последствий изменений распределения крови при антиортостатической модели невесомости является сдвиг в сторону метаболического ацидоза в крови, оттекающей от мозга. С явлениями ацидоза связываются функциональные сдвиги со стороны вестибулярного, зрительного и вкусового анализаторов, обнаруженные в этом исследовании.

Еще одним специфическим результатом отсутствия гидростатического давления может быть возникновение изменений венозного тонуса (особенно на нижних конечностях), регуляция которого в наземных условиях в значительной мере определяется колебаниями гидростатического давления. В частности, в экспериментах с имитацией невесомости меняются упругоэластичные свойства вен, лишенных этого привычного раздражителя. Возрастает их ригидность, ухудшается растяжимость и сократимость. Эта закономерность подтверждается и результатами послеполетного обследования космонавтов, хотя во время полета при воздействии отрицательного давления обнаружено возрастание растяжимости сосудов на ногах.

Патогенез других изменений сердечно-сосудистой системы в невесомости и при ее лабораторном моделировании более сложен и не может быть в столь определенной степени поставлен в зависимость только от отсутствия гидростатического давления крови.

Теснее всего, хотя и не полностью, связано с этим механизмом ухудшение постуральных реакций сердечно-сосудистой системы. Снижение ортостатической устойчивости обнаружилось уже после первых космических полетов человека. В дальнейшем это наблюдение многократно подтверждалось. Ортостатические нарушения закономерно проявляются и после экспериментов с водной иммерсией и постельным режимом.

Происхождение ортостатических расстройств связывается, в частности, с явлениями дегидратации, а точнее, с уменьшением общего объема циркулирующей крови, поскольку оно усугубляет снижение венозного возврата крови к сердцу при вертикальном положении тела. Следует заметить, что дегидратация любого происхождения (кровопускание, ограниченное потребление воды, тепловой стресс) отрицательно сказывается на переносимости воздействий, связанных с перераспределением крови к ногам. Правда, не все авторы находят четкую корреляцию между степенью дегидратации или уменьшением объема циркулирующей крови, с одной стороны, и выраженностью ортостатических нарушений – с другой, так что этот механизм не является единственным в формировании ортостатической неустойчивости. Большое значение в генезе ортостатических расстройств придается также снижению мышечного тонуса, в особенности на нижних конечностях, утомлению, емкости венозного депо в нижней половине тела, проницаемости сосудистых стенок и выходу плазмы в межклеточное пространство, особенностям нервно-гуморальной регуляции функций в вертикальном положении. Установлено, что ортостатические расстройства после полета бывают более выраженными у тех космонавтов, у которых устойчивость к вертикальной позе была относительно ниже и перед полетом.

Однонаправленность сдвигов при имитации невесомости и ортостатических воздействиях создает предпосылки для суммации эффектов в период перехода к вертикальному положению после окончания гиподинамии. Быстрее исчерпываются компенсаторные возможности сердечно-сосудистой системы и наступает срыв компенсации (предколлаптоидное состояние). Дальнейшее развитие декомпенсации выражается в падении минутного объема, нарушении мозгового кровообращения и появлении обморока.

Наличие связи между изменениями, которые возникают со стороны сердечно-сосудистой системы при имитации невесомости и при ортостатических пробах, позволяет по выраженности сдвигов, зарегистрированных в покое, судить об ожидаемых изменениях ортостатической устойчивости. Еще большие возможности для такого прогнозирования открываются в случае использования функциональных проб, воспроизводящих дозированное затруднение возврату венозной крови к сердцу. Обнаружена, в частности, высокая корреляция между реакциями на ортостатическую пробу и пробу Вальсальва. Особенно информативной является проба с воздействием отрицательного давления на нижнюю половину тела, которая используется во время самого полета, а также при предполетном и послеполетном обследовании космонавтов.

Причины возникновения неустойчивости к этим нагрузкам после имитации или действия реальной невесомости состоят, таким образом, не только в развитии дегидратации, но и в изменениях функционального состояния сердечно-сосудистой системы.

Дегидратация, обусловленная отсутствием или снижением гидростатического давления крови, по-видимому, является также одной из причин ухудшения переносимости ряда других стрессовых воздействий, в частности ускорений и физических нагрузок. Во всяком случае, экспериментальное обезвоживание на величину, составлявшую более 4 % веса тела, привело к нарушениям со стороны изометрического мышечного сокращения, физической работоспособности и переносимости продольных ускорений.

Приведенные данные позволяют констатировать, что конечные эффекты, вытекающие из механизма перераспределения крови в состоянии невесомости, весьма серьезны. Понятно поэтому то большое значение, которое в настоящее время придается разработке мероприятий по профилактике изменений, связанных с отсутствием гидростатического давления крови в невесомости.

Снятие весовой нагрузки на опорно-двигательный аппарат в условиях невесомости служит причиной возникновения системных сдвигов, патофизиологической основой которых является «неупотребление» органов.

Отсутствие необходимости в активном противодействии гравитационным силам и поддержании позы, уменьшение мышечных затрат на перемещение тела и отдельных его частей в пространстве теоретически должно приводить к снижению энергообмена и уменьшению требований к системе транспорта кислорода. Недогрузка мышечной системы и опорных структур, существенная перестройка двигательной координации в безопорном состоянии, кроме этого, создают предпосылки для изменений метаболизма, нарушений нейрогуморальных механизмов регуляции соматических и вегетативных функций и развития так называемого синдрома гиподинамии.

В длительных наземных исследованиях с пребыванием испытуемых на постельном режиме и контролируемым ограничением двигательной активности, ее пространственных (гипокинезия) и силовых (гиподинамия) компонентов чаще всего наблюдается снижение основного обмена в пределах от 3–7 до 20–22 %. Единичные измерения величины газообмена и легочной вентиляции во время космических полетов не дают оснований для окончательных выводов, поскольку отмечено как увеличение, так и уменьшение потребления кислорода.

Выполнение ряда рабочих операций внутри и вне кабины космического корабля осложнено отсутствием привычной опоры и требует существенной перестройки координации движений. В результате мышечные и энергетические затраты на эти операции могут в состоянии невесомости возрасти по сравнению с наземными условиями.

Исследование энергетической стоимости локомоций, выполняемых в условиях экспериментально воспроизводимой гипогравитации, показало снижение энерготрат на выполнение одинаковых по характеру движений по мере уменьшения «веса». Энерготраты американских космонавтов при работе на поверхности Луны (1/6 G) в специальном скафандре составляли в среднем 220–300 ккал/ч, что эквивалентно ходьбе без всякого снаряжения в наземных условиях со скоростью 5 км/ч.

Снижение энергетического метаболизма является одной из причин уменьшения потребности в пище. Такие наблюдения проведены, в частности, в опытах с водной иммерсией и гиподинамией.

К числу специфических последствий гиподинамии относятся и изменения со стороны опорно-двигательного аппарата.

Деминерализация костной ткани, которая неоднократно регистрировалась в наземных исследованиях с гиподинамией и после окончания реальных космических полетов, по-видимому, является следствием снижения весовой нагрузки на скелет.

Нельзя исключить возможности изменений механической прочности скелета вследствие его декальцинации. Снижение нагрузки на опорно-двигательный аппарат уменьшает эритропоэтическую функцию костного мозга.

Недостаточная нагрузка на мышечную систему (даже при кратковременной невесомости выражается отчетливым снижением биоэлектрической активности мышц шеи, спины и бедра) приводит к уменьшению объема мышц и периметров нижних конечностей. Это явление, вероятно, связано с развитием атрофических процессов в мышцах, хотя в начальной фазе полета быстрое уменьшение периметров может зависеть и от уменьшения кровенаполнения нижних конечностей. Одновременно перестраивается белковый обмен, возникает отрицательный азотистый баланс. Уменьшается также общее содержание калия в организме, что свидетельствует о распаде мышечных белков.

Невесомость и экспериментальная гиподинамия приводят к уменьшению тонуса мускулатуры, мышечной силы, выносливости и физической работоспособности.

Уменьшение мышечного тонуса, физической напряженности и энергообмена в состоянии гиподинамии сопровождается развитием детренированности сердечно-сосудистой системы, что, в свою очередь, ухудшает переносимость различных нагрузок.

Большинство авторов констатируют замедление процесса нормализации частоты пульса после воздействия перегрузок и в первые часы пребывания в состоянии невесомости, что, по-видимому, является следствием своеобразной ориентировочной реакции на новизну обстановки и нервно-эмоциональное напряжение. Когда значение эмоционального фактора снижалось, нормализация частоты пульса протекала быстрее. Таким образом, относительная тахикардия в первые часы воздействия невесомости не является результатом ее специфического влияния на сердечно-сосудистую систему. В пределах 5-суточного срока пребывания в невесомости наиболее характерно урежение частоты пульса и увеличение его колеблемости, что связывают с относительным повышением тонуса блуждающего нерва. При более продолжительных полетах после первоначального снижения и последующей стабилизации частоты пульса намечалась тенденция к повышению этого показателя. Аналогичная зависимость проявляется и в экспериментах с имитацией невесомости. Для более продолжительных сроков гиподинамии характерно увеличение частоты пульса.

Обнаруженные в условиях длительной гиподинамии изменения частоты пульса рассматриваются многими авторами как проявление функциональной недостаточности вагуса и связанного с ней преобладания симпатических эффектов в регуляции сердечной деятельности.

Аналогичные изменения соотношений между симпатическими и парасимпатическими влияниями на сердечно-сосудистую систему обнаруживаются в реакциях артериального давления. В экспериментах с имитацией невесомости после первоначального снижения артериального давления в дальнейшем могут наблюдаться как гипотензивный, так и гипертензивный типы реакций с общей тенденцией к возрастанию артериального давления и снижению пульсового давления. В длительных полетах обнаружено повышение артериального давления, что рассматривается как результат высокого рабочего и эмоционального напряжения.

Электрокардиографические исследования, проведенные в условиях космических полетов, не выявили существенных изменений зубцов и интервалов электрокардиограммы. Ряд авторов отмечают, правда, некоторое удлинение времени предсердно-желудочковой или внутрижелудочковой проводимости и тенденцию к снижению амплитуды зубца Т, что свидетельствует об отклонениях со стороны функции проводимости и интенсивности обменных процессов в сердечной мышце в состоянии невесомости. Появление положительного феномена Хеклина, а также случаи экстрасистолии и даже бигемении, имевшие место у американских космонавтов, укладываются в картину гипокалиемии, что находит подтверждение в данных о возникновении отрицательного баланса калия во время космических полетов. В опытах с длительной гиподинамией также обнаружены позиционные сдвиги, замедление внутрисердечной проводимости и снижение амплитуды зубцов R и Т. В грудных отведениях выявляется синдром Тv-1 > Тv-6, что связывают с увеличением венозного притока к сердцу.

Изменения фазовой структуры сердечного цикла в исследованиях с имитацией невесомости часто укладываются в симптомокомплекс, который В. Л. Карпман именует фазовым синдромом гиподинамии сердца. Отдельные сдвиги, свидетельствующие об уменьшении механической активности сердечной мышцы, выявлены и в условиях космического полета. К их числу относятся уменьшение амплитуды и продолжительности колебательных циклов сейсмокардиограммы, возрастание электромеханической задержки, механоэлектрического коэффициента и механосистолического показателя, а также увеличение периода напряжения и уменьшение периода изгнания. Вскоре после приземления у космонавтов в отдельных случаях зарегистрированы признаки ухудшения сократительной функции миокарда.

Изучение таких гемодинамических показателей, как величина систолического и минутного объемов крови, периферического сопротивления в условиях невесомости, было начато еще при полетах орбитальных станций «Салют». У космонавтов были отмечены признаки как уменьшения, так и увеличения систолического и минутного объемов. Ранее при исследованиях, проведенных во время кратковременной невесомости на самолете, было обнаружено замедление скорости кровотока. При функциональных пробах с физической нагрузкой во время полета отмечены более низкие, чем до полета, величины минутного объема крови.

В модельных экспериментах, по мнению большинства исследователей, систолический объем крови уменьшается. Периферическое сопротивление в условиях гиподинамии возрастает, но может и уменьшаться. В космических полетах сопротивление сосудов менялось в соответствии с динамикой выброса крови. Разноречивы сведения о скорости распространения пульсовой волны по аорте и артериям мышечного типа. Имеются сообщения об отсутствии закономерных изменений этого показателя, его увеличении или, наоборот, снижении. Следует отметить, что для большинства описанных изменений функционального состояния сердечно-сосудистой системы характерна фазовость, что отчасти объясняет разноречивость оценок относительно направленности некоторых сдвигов.

Основываясь на материалах, полученных в реальных космических полетах, различают последовательные фазы адаптации сердечно-сосудистой системы к невесомости. Переходные реакции, связанные с нормализацией показателей после действия перегрузок, сменяются реакциями «разгрузочного» характера и последующей стабилизацией на уровне, отражающем преобладание парасимпатических эффектов в регуляции кровообращения. Однако учитывая опыт лабораторных исследований и полетов, можно заключить, что на этом процесс адаптации не заканчивается. При длительных полетах возможно появление гиподинамически обусловленных реакций, включающих в себя преобладание симпатических эффектов, развитие фазового синдрома гиподинамии миокарда и детренированности сердечно-сосудистой системы.

Общие циркуляторные сдвиги, связанные с гиподинамией и снижением гидростатического давления крови, сопровождаются и изменениями регионарного кровообращения, в частности развитием венозного застоя. После полетов с помощью реографической методики обнаружена асимметрия тонуса мозговых артериол и вен. Нарушения мозговой гемоциркуляции рассматриваются в качестве причины ряда неврологических расстройств при длительной гиподинамии. Последние характеризуются симптомами межполушарной асимметрии и правосторонней пирамидной недостаточности. Асимметрия сухожильных рефлексов с правосторонним преобладанием выявлена и после космических полетов.

Изменяется и биоэлектрическая активность мозга, что авторы объясняют уменьшением функциональной подвижности корковых процессов и активирующего влияния ретикулярной формации. К числу других вероятных неврологических нарушений относят вегетативно-сосудистую дисфункцию, астеноневротический синдром и синдром нейромышечных нарушений.

Условия реального космического полета ограничивают возможности проведения широких исследований обмена веществ, а также крови, мочи и других биологических субстратов. Чаще всего о воздействии невесомости судят по данным послеполетных обследований, хотя трактовка зарегистрированных изменений в ряде случаев затруднена.

В длительных полетах на орбитальных станциях обнаружено снижение числа лейкоцитов и ретикулоцитов, а после приземления отмечались признаки торможения гемопоэза (уменьшение числа ретикулоцитов на 34 %, эритроцитов на 15,2 %, общей массы гемоглобина на 14–23, 6-34 %). К 7-12 суткам реадаптационного периода число ретикулоцитов возрастало почти в 3,5 раза, что сопровождалось постепенным повышением числа эритроцитов и массы гемоглобина.

Увеличение СОЭ, возникновение нейтрофильного лейкоцитоза с лимфо– и эозинопенией, которые довольно часто регистрируются у космонавтов в послеполетном периоде, можно рассматривать как проявление реадаптационного стресса. Об этом, в частности, свидетельствует увеличение концентрации кортикостероидов и катехоламинов в крови и повышение их экскреции с мочой после полета. Напротив, в состоянии невесомости и в процессе проведения модельных экспериментов обнаруживается снижение активности кортикоадреналовой системы.

Сведения о влиянии невесомости и имитирующих ее условий на свертываемость крови разноречивы.

Характер двигательной активности и питания в условиях невесомости влияет на состояние липоидного обмена, о чем можно судить по увеличению содержания в крови холестерина, лецитина и неэстерифицированных жирных кислот.

Изменения белкового обмена, обусловленные явлениями мышечной атрофии и связанные, по-видимому, со снижением ресинтеза белка и скорости включения в него аминокислот, проявлялись у космонавтов в повышении содержания мочевины в крови и в усиленном выведении креатинина с мочой. Важным проявлением изменений белкового обмена служит и снижение синтеза гемоглобина в космическом полете.

Деминерализация костной ткани сопровождается усиленной экскрецией кальция в космическом полете и опытах с имитацией невесомости.

Общая астенизация и довольно выраженные изменения метаболизма, связанные с гиподинамией, сопровождаются снижением иммунологической резистентности и повышением вероятности заболеваний в космическом полете. Увеличение микробной обсемененности кожных покровов и слизистых оболочек создает дополнительные основания для подобных опасений.

Таким образом, снятие весовой нагрузки на костно-мышечный аппарат является самостоятельным и весьма важным пусковым механизмом в развитии разнообразных нарушений, обусловленных невесомостью. Целостная картина изменений, возникающих в состоянии организма человека под влиянием невесомости или имитирующих ее действие условий, включает в себя сложный комплекс реакций со стороны сердечно-сосудистой, костно-мышечной систем, системы крови, обменных функций, механизмов нервной и гуморальной регуляции, общей реактивности и иммунитета, состояния анализаторной и высшей нервной деятельности. Поскольку упомянутые реакции являются преимущественно выражением адаптационных сдвигов, они, как правило, не накладывают сколько-нибудь существенных ограничений на общее состояние и работоспособность космонавтов в процессе самого полета. Тем не менее имеющиеся научные данные не позволяют полностью исключить возможность развития более серьезных изменений при продолжительных полетах (большей выраженности деструктивных процессов, астенизации, возникновения заболеваний, требующих специализированной медицинской помощи, понижения физической и умственной работоспособности).

В настоящее время наиболее критической формой проявления сдвигов, обусловленных влиянием невесомости на организм человека, являются нарушения, которые возникают в реадаптационном периоде. Основные из них состоят в снижении переносимости перегрузок, вертикальной позы, ухудшении физической работоспособности, координации ходьбы и других двигательных актов. Поэтому одной из важных в научно-практическом отношении задач медицинского обеспечения длительных космических полетов является разработка и внедрение системы мероприятий по профилактике расстройств, возникающих у космонавтов при возвращении на Землю.

Наиболее перспективные направления профилактических воздействий определяются механизмами формирования изменений, происходящих в невесомости. На достаточно упрощенной схеме патогенеза нарушений, обусловленных влиянием невесомости (рис. 3.4), показаны некоторые из возможных направлений и средств профилактики (звенья патогенеза и связь между ними обозначены тонкими линиями и стрелками, профилактические средства и направления их воздействия – жирными линиями и стрелками).

Наиболее естественным и практически осуществимым является применение профилактических воздействий на такие первичные, пусковые эффекты невесомости, как снятие гидростатического давления крови и весовой нагрузки на опорно-двигательный аппарат. В случае достаточно надежного блокирования этих первичных эффектов можно рассчитывать на прерывание цепи вторично обусловленных сдвигов, в том числе и тех, которые вызывают наибольшую озабоченность в реадаптационном периоде. Значительно более сложен выбор метода профилактики сдвигов, связанных с изменениями в деятельности афферентных систем. Самым радикальным решением всех проблем выглядит введение искусственной гравитации на космических кораблях, однако в настоящее время еще не накоплено достаточного количества обоснований в пользу этого решения и не проведена оценка возможных побочных эффектов длительного пребывания в постоянно вращающейся системе, чтобы оправдать необходимость в ее разработке. Тем не менее поиски оптимальных параметров системы искусственной гравитации (радиуса, угловой скорости вращения, минимально эффективной величины радиального ускорения) проводятся.

Наиболее логичный путь профилактики последствий необычного распределения крови, связанного с отсутствием гидростатического давления, состоит в искусственном воспроизведении эффекта гидростатического давления. С этой целью в экспериментах с водной иммерсией и постельным режимом были испытаны следующие средства и методы: надувные манжеты на конечностях, дыхание под избыточным давлением и воздействие отрицательного давления на нижнюю половину тела.

Изучались также эффекты, достигаемые использованием центрифуги с коротким радиусом, в которой действие продольных перегрузок имитировало гидростатическое давление, но одновременно оказывало влияние на костно-мышечную систему и гравирецепцию. К рассматриваемой группе средств относятся также воздействия, обеспечивающие инерционные смещения крови вдоль магистральных сосудов при ударных нагрузках, действующих в направлении продольной оси тела.

Описание: image008

Рис. 3.4. Схема патогенеза нарушений, обусловленных влиянием невесомости (по: И. Д. Пестов, 1979): а – звенья патогенеза и связь между ними; б – профилактические средства и направления их воздействия.

Профилактические воздействия на некоторые промежуточные звенья этой патогенетической цепи могут осуществляться с помощью фармакологических и гормональных препаратов, а конечные эффекты (снижение ортостатической устойчивости после полета) – с помощью средств, оказывающих избыточное давление на нижнюю половину тела.

Таким образом, в отношении профилактики последствий гиподинамического синдрома существует вполне реальная конструктивная основа, состоящая в создании постоянной (с помощью нагрузочных костюмов) и переменной (посредством выполнения комплексов упражнений на специальных тренажерах) нагрузки на костно-мышечный аппарат, использовании фармакологических препаратов и средств неспецифической профилактики.

Разумеется, действие большинства описанных выше профилактических средств не является строго избирательным, часто распространяется на смежные звенья патогенеза и, таким образом, выходит за рамки предложенной классификации, которая подчеркивает лишь преимущественные эффекты, на которые рассчитано то или иное средство. К примеру, действие отрицательного давления на нижнюю половину тела, помимо перераспределения крови, сопровождается также осевой нагрузкой на организм, величина и точки приложения которой определяются особенностями конструкции вакуумной емкости. Кроме того, декомпрессия нижней половины тела способна воспроизводить и ощущения, характерные для действия силы тяжести. Применение вакуумной емкости при постельном режиме вызывает, в частности, ощущение пребывания в вертикальной позе. Другим примером профилактического воздействия, обладающего широким спектром и адресованного, по существу, ко всем пусковым механизмам изменений, связанных с невесомостью, служит применение бортовых центрифуг с коротким радиусом. Тем не менее на современном уровне знаний, теоретической и технической вооруженности достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь комплексом профилактических воздействий, адресованных различным звеньям патогенетической цепи.

Предыдущая

Добавить комментарий