Современная экологическая обстановка в отдельных странах и регионах оставляет желать лучшего. Миссия нашего сайте — обеспечить русскоязычных жителей планеты Земля актуальной информацией о защите окружающей среды, экологической безопасности и экологии в целом.

Полезные ресурсы и публикации:
-

И.А. Литвенкова
Экология городской среды: урбоэкология

Курс лекций. – Витебск: Издательство УО «ВГУ им. П.М.Машерова», 2005 – 163 с.

Предыдущая

Тема 11. Экология жилища человека

3. Экологическая характеристика строительных материалов: токсичность, радиоактивность и биоповреждения

Все строительные материалы делятся на естественные и искусственные. Естественные материалы: дерево, гранит, базальт, диабаз и др. К искусственным относят различные виды кирпича, термоблоки, искусственные вяжущие вещества (гипс, известь, магнезит). Особую группу составляют  синтетические полимерные материалы (пластмассы). Одно из средств оптимизации и создания оптимальной экологической обстановки внутренней среды здания – правильный выбор материалов. Основные требования к которым: 1.низкая теплопроводность; 2. хорошая воздухопроницаемость; 3. отсутствие гигроскопичности; 4. низкая звукопроводность; 5. стройматериалы не должны выделять в окружающую среду летучие вещества; 6. не должны стимулировать развитие микрофлоры, роста грибов.

Экологическая чистота строительных материалов и изделий определяется содержанием, выделением или концентрацией в них вредных веществ. При оценке степени экологической чистоты строительных материалов в первую очередь учитывают их токсичность, радиоактивность и микробиологические повреждения.

Токсичность строительных материалов оценивают путем сравнения их состава с ПДК выделяющихся токсичных веществ и элементов. Первостепенное значение имеет класс опасности, состав вредных веществ и их количественное содержание. С точки зрения токсичности основным источником экологической опасности в жилых зданиях являются полимерные строительные материалы.

В настоящее время насчитывается свыше 100 наименований полимерных материалов. Полимеры — высокомолекулярные соединения, важнейшая составная часть пластмасс. Исходным сырьем для получения полимеров служит природный газ, а также «попутный» газ, сопровождающий выходы нефти и каменноугольный деготь, получаемый при коксовании угля. Состоят они в основном из трех групп химических соединений: 1) связующего (различные смолы, полистирол, фенолоформальдегидные соединения и др.), 2) пластификатора и 3) наполнителя. В качестве вспомогательных веществ в их состав входят также пигменты (красители), стабилизаторы и др.

Крупномасштабное производство полимерных материалов и широкое их использование в строительстве началось в 60-е гг. В настоящее время в мире производится более 100 млн. т полимеров, значительная часть их используется в строительстве. Спектр применения полимеров в строительстве весьма широк. Они повсеместно используются для: покрытия полов (линолеум, поливинилхлоридные плитки и др.), внутренней отделки стен и потолков, гидроизоляции и герметизации зданий, изготовления тепло- и звукоизоляционных материалов (поропласты, пенопласты, сотопласты), кровельных и антикоррозионных материалов и покрытий, оконных блоков и дверей, конструкционно-отделочных и ограждающих элементов зданий, лаков, красок, эмалей, клеев, мастик и для многих других целей.

При оценке экологической чистоты полимерных строительных материалов руководствуются следующими основными требованиями к ним (В.О.Шефтель и др., 1988):

-       полимерные материалы не должны создавать в помещении стойкого специфического запаха;

-  выделять в воздух летучие вещества в опасных для человека концентрациях;

-  стимулировать развитие патогенной микрофлоры на своей поверхности;

-  ухудшать микроклимат помещений;

-  должны быть доступными влажной дезинфекции;

-  напряженность поля статического электричества на поверхности полимерных материалов не должна быть больше 150 В/см (при относительной влажности воздуха в помещении 60—70%).

         Приведем характеристику некоторых полимерных строительных и отделочных материалов, способных выделять токсичные субстанции.

Материалы на основе карбамидных смол. Древесностружечные плиты (ДСП) выделяют формальдегида в 2,5—3 раза больше допустимого уровня. В свободном состоянии формальдегид представляет собой раздражающий газ, обладающий общей токсичностью. Он подавляет действие ряда жизненно важных ферментов в организме, приводит к заболеваниям дыхательной системы и центральной нервной системы.

Материалы на основе фенолформальдегидных смол (ФФС) -древесноволокнистые (ДВП), древесностружечные (ДСП) и древеснослоистые (ДСП). Выделяют в воздушную среду помещений фенол и формальдегид. Концентрация формальдегида в жилых помещениях, оборудованных мебелью и строительными конструкциями, содержащими ДСП, может превышать ПДК в 5—10 раз. Особенно высокое превышение допустимого уровня отмечается в сборнощитовых домах. Токсичность выделяющихся веществ во многом зависит от марки смолы.

Материалы на основе эпоксидных смол. Как и другие виды смол: карбамидные, фенольные, фурановые и полиуретановые, эпоксидные смолы содержат летучие токсичные вещества: формальдегид, дибутилфтолат, эрихлоргидин и др. Например, полимербетон на основе эпоксидной смолы ЭД-6 с введением в его состав пластификатора МГФ-9 снижает выделение ЭХГ и может быть рекомендован только для промышленных и общественных зданий.

Поливинилхлоридные материалы (ПВХ). ПВХ — линолеумы обладают общей токсичностью, в процессе эксплуатации могут создавать на своей поверхности статическое электрическое поле напряженностью до 2000—3000 В/см. При использовании поливинилхлоридных плиток в воздушной среде помещений обнаруживают фталаты и бромирующие вещества. Весьма отрицательное свойство плиток - низкие теплозащитные свойства, что приводит к простудным заболеваниям. Рекомендуются только во вспомогательных помещениях и коридорах.

Резиновый линолеум (релин). Независимо от длительности нахождения в помещении выделяет неприятный специфический запах. Стиролосодержащие резиновые линолеумы выделяют стирол. На своей поверхности релин, как и все пластмассы, накапливает значительные заряды статического электричества. В жилых комнатах покрывать пол релином не рекомендуется.

Нитролинолеум. Выделяет дибутилфталат и фенол в количествах, превышающих допустимый уровень.

Поливинилацетатцые покрытия (ПВА) при недостаточном проветривании выделяют в воздушную среду помещений формальдегид и метанол в количестве, превышающем ПДК в 2 раза и более.

Лакокрасочные материалы. Наиболее опасны растворители и пигменты (свинцовые, медные и др.). Кроме того, лакокрасочные покрытия загрязняют воздушную среду жилых помещений толуолом, ксилолом, бутилметакрилатом и др. Токсичные битумные мастики, изготовленные на основе синтетических веществ, содержат низкомолекулярные и другие летучие токсичные соединения.

Полимерные материалы характеризуются рядом экологически неблагоприятных свойств, к которым относятся:

1) Выделение в атмосферу жилища химических веществ, наиболее опасные из которых: изоцианты, кадмий и антипирены. Изоцианты — опасные токсичные соединения, проникающие в жилые помещения из полиуретановых материалов (уплотнителей, соединений и др.). Вредное воздействие изоциантов, приводящих к астме, аллергии и к другим заболеваниям, усиливается при нагревании полиуретановых материалов солнечными лучами или теплом от отопительных батарей. Весьма опасен кадмий — тяжелый металл, содержащийся в лакокрасочных материалах, пластиковых трубах, напольных покрытиях и т. д. Попадая в организм человека, он вызывает необратимые изменения скелета, приводит к заболеваниям почек и малокровию.

2) Еще одна экологическая угроза, исходящая из полимерных строительных материалов — противопожарные вещества — антипирены, содержащиеся в негорючих пластиках. Установлена связь вредных веществ, выделяющихся из них, и заболеванием населения аллергией, бронхиальной астмой и др.

3) Проведенные в последние годы детальные исследования показали, что полимерные строительные материалы могут оказаться источником выделения и таких вредных веществ, как бензол, толуол, ксилол, амины, акрилаты и др. Миграция этих и других токсичных веществ из полимерных материалов происходит вследствие их химической деструкции, т.е. старения как под действием химических и физических факторов (окисления, перепадов температуры, инсоляции и др.), так и в связи с недостаточной экологической чистотой исходного сырья, нарушением технологии их производства или использованием не по назначению. Уровень выделения газообразных токсичных веществ заметно увеличивается при повышении температуры на поверхности полимерных материалов и относительной влажности воздуха в помещении.

4) Еще один из возможных источников ухудшения экологического состояния жилых помещений - расселение по поверхности полимерных материалов микрофлоры. Некоторые из пластмасс действуют на микроорганизмы губительно, другие же, наоборот, оказывают на них стимулирующее воздействие, способствуя интенсивному размножению. Насколько опасно это их свойство, можно судить по времени сохранности на поверхности полов из полимерных материалов возбудителей: дифтерии — 150 дней, брюшного тифа и дизентерии — более 120 дней.

5) Не менее опасна и способность полимерных строительных материалов накапливать на своей поверхности заряды статического электричества. В частности, установлено, что электризуемость полимеров оказывает стимулирующее воздействие на развитие патогенной микрофлоры, а также способствует более легкому проникновению летучих токсичных веществ, получивших электрический заряд, в организм.

6) Выделение газообразных токсичных веществ в результате горения полимерных строительных материалов еще одна весьма серьезная опасность, связанная с их использованием. Продуктами горения полимерных материалов являются такие токсичные вещества, как формальдегид, хлористый водород, оксид углерода и др. При горении пенопластов выделяется весьма опасный газ — фосген (в первую мировую войну он применялся как отравляющее вещество удушающего действия), при термическом разложении пенополистирола — цианистый водород, газообразный стирол и другие не менее опасные продукты.

Радиоактивность строительных материалов.      Одним из параметров экологической безопасности строительных материалов является показатель радиационного качества. Критерием для принятия решения о возможности применения строительных материалов и изделий служит показатель «удельной эффективной активности естественных радионуклидов», определяемый по формуле:

 Бк/кг,

где ARa, ATh и Ак  - удельная эффективная активность соответственно радия, тория и калия.

Уровень фона гамма-излучения внутри здания зависит в основном от радиоактивности строительных материалов, используемых в качестве ограждающих конструкций. В природных условиях повышенной концентрацией радионуклидов U, Th и К обладают калиевые полевые шпаты, калийные соли, слюды, глауконит, минералы глин: монтмориллонит (бентонит), каолинит, гидрослюда и др., а также акцессорные минералы: циркон, монацит, сфен и др. Наибольшей радиоактивностью обладают магматические породы кислого и щелочного состава (гранит, кварцевый диорит и др.), наименьшей - основные и ультраосновные породы (габбро, перидотит и др.). Среди осадочных пород максимальной радиоактивностью обладают глины (причем глубоководные морские глинистые осадки более радиоактивны, нежели континентальные), глинистые и битуминозные сланцы.

Биоповреждения строительных материалов. Строительные материалы могут ухудшать экологическую ситуацию в зданиях и сооружениях не только при выделении токсичных и радиоактивных веществ, но и способствуя росту микроорганизмов и других представителей биоты. Повреждения (нарушения) строительных материалов, протекающие под действием организмов, в основном микроорганизмов, называются биоповреждениями (биодеструкцией). Биоповреждения снижают уровень экологической безопасности строительных материалов, ухудшают их качество, приносят значительный экологический и экономический ущерб.

Наибольший объем биоповреждений строительных материалов связан с деятельностью микроорганизмов (бактерий, грибов, актиномицет, или лучистых грибков). Практически все виды микроорганизмов, особенно в условиях, благоприятных для их роста, т.е. при повышенной влажности и затрудненном водообмене, вызывают биоповреждения строительных материалов. Внешне эти воздействия проявляются в виде грибковых налетов на отштукатуренных и окрашенных стенах, иногда непосредственно на бетонной поверхности, пигментных пятнах, обесцвечивании и т.д. И если на наружных стенах зданий в основном преобладают микроводоросли, лишайники и другие фотосинтезирующие организмы, а также некоторые виды бактерий, то внутри помещений под синтетическими обоями и на клеевой шпаклевке стен в основном развиваются плесневые грибы.

В отличие от микроскопических грибов и других микроорганизмов воздействие бактерий внешне может не проявляться, однако влияние их на физические свойства и химический состав не менее значителен, что может приводить к развитию биокоррозии. Биокоррозионному разрушению подвержены металлы, бетон, древесина, полимерные материалы с низкой биостойкостью пластификаторов и накопителей и т.д. На поверхности корродируемого материала (металлические и неметаллические конструкции) под воздействием продуктов метаболизма микробов, а именно различных органических и неорганических кислот, СО2, Н S и NH3, происходят электрохимические реакции и строительный материал деградирует, вплоть до полного разрушения.

Выделяют два вида биокоррозии: анаэробную, которая протекает без доступа кислорода, т.е. в восстановительных условиях, и аэробную (в присутствии кислорода). Тионовые бактерии в аэробных условиях могут вызывать коррозию подземных сооружений. Железобактерии нередко выводят из строя систему стальных дренажных труб, закупоривая отверстия микробными клетками и образующимися оксидами железа. Сульфатовосстанавливающие бактерии коррозируют металлические конструкции в сырых помещениях.

По В.Д. Ильичеву (1984), анализ и обобщение накопленного опыта позволили выдвинуть эколого-технологическую концепцию биоповреждений, согласно которой биоповреждения рассматриваются как реакция окружающей среды, биосферы на то новое, что вносит в нее деятельность человека. Строительные материалы и изделия, подвергаемые «нападению» микроорганизмов, рассматриваются как составная часть естественных биоценозов, вовлекаемых в общий круговорот веществ. Наиболее приемлемыми считаются химические средства защиты – биоциды. В качестве указанных средств применяют:

фунгициды для защиты от различных видов грибков, повреждающих строительные материалы;

бактерициды для защиты от различных видов бактерий;

альгициды и моллюскоциды для защиты от обрастания в водной среде соответственно водорослями и моллюсками трубопроводов, гидротехнических сооружений, систем водоснабжения и др.;

инсектициды для защиты древесины, полимерных и других материалов от древоточцев, термитов и других насекомых;

акарициды для борьбы с акарофауной.

Предыдущая