19.03.2024

Глава 1. Предмет экологии. Методы и задачи

Т.А. Акимова, A.П. Кузьмин, В.В. Хаскин
Экология. Природа — Человек — Техника

Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2001. — 343 с.

Предыдущая

Глава 1. Предмет экологии. Методы и задачи

1.4. Методы экологии

Методическую основу современной экологии составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Экология давно уже перестала быть чисто описательной дисциплиной, сейчас в ней преобладают количественные методы — измерения, расчеты, математический анализ. Системный подход пронизывает большинство экологических исследований, так как любой объект экологии имеет системную природу. В системном подходе объединяются аналитические и синтетические приемы исследования. Разнообразие исследовательских и прикладных задач влечет за собой и разнообразие применяемых в экологии методов. Их можно объединить в несколько групп.

Методы регистрации и оценки состояния среды являются необходимой частью любого экологического исследования. К ним относятся метеорологические наблюдения; измерения температуры, прозрачности, солености воды и анализ ее химического состава; определение характеристик почвенной среды, измерения освещенности, радиационного фона, напряженности физических полей, определение химической и бактериальной загрязненности среды и т.п.

К этой же группе методов следует отнести мониторинг периодическое или непрерывное слежение за состоянием экологических объектов и за качеством окружающей среды. Большое практическое значение имеет регистрация состава и количества вредных примесей в воде, воздухе, почве, растениях в зонах антропогенного загрязнения, а также исследования переноса загрязнителей в разных средах. В настоящее время техника экологического мониторинга быстро развивается, используя новейшие методы физико-химического и химического экспресс-анализа, дистанционного зондирования, телеметрии и компьютерной обработки данных. Важным средством экологического мониторинга, позволяющим в ряде случаев получить интегральную оценку качества среды, является биоиндикация — использование для контроля состояния среды некоторых организмов, особо чувствительных к изменениям среды и к появлению в ней вредных примесей.

Методы количественного учета организмов и методы оценки биомассы и продуктивности растений и животных лежат в основе изучения природных сообществ. Для этого применяются подсчеты особей на контрольных площадках, в объемах воды или почвы, маршрутные учеты, отлов и мечение животных, наблюдения за их перемещениями с помощью телеметрии и другие средства вплоть до аэрокосмической регистрации численности стад, скоплений рыбы, густоты древостоя, состояния посевов и урожайности полей. Изучение динамики численности популяций потребовало введения в экологию методов демографии. Все это необходимо для овладения управлением экосистемами, для предотвращения гибели видов и снижения биологического разнообразия и биопродуктивности экосистем. Определение биомассы и продуктивности различных сообществ организмов позволяет оценить биопродукционный потенциал отдельных территорий и акваторий, а также глобальный природный фонд органического вещества биосферы и пределы его использования.

Исследования влияния факторов среды на жизнедеятельность организмов составляют наиболее разнообразную группу методов экологии. В их число входят различные, подчас сложные и длительные наблюдения в природе. Но чаще применяются экспериментальные подходы, когда в лабораторных условиях регистрируется воздействие строго контролируемого фактора на те или иные функции растений или животных, а также анализируется применимость полученных на животных результатов к экологии человека. Этим путем устанавливаются оптимальные или граничные условия существования. В частности, так определяются критические и летальные дозы химических и других агентов, по которым рассчитывают предельно допустимые концентрации и воздействия, лежащие в основе экологического нормирования. В данном случае экология смыкается с физиологией, биохимией, токсикологией. Эколог использует применяемую в этих дисциплинах экспериментальную технику. Методы этой категории важны также при определении устойчивости экосистем и изучении адаптации — приспособлений растений, животных и человека к различным условиям среды.

Методы изучения взаимоотношений между организмами во многовидовых сообществах составляют важную часть системной экологии. Здесь также важны натурные наблюдения и лабораторные исследования пищевых отношений, пищевого поведения, опыты с переносом «меток», например, радиоактивных изотопов, с помощью которых можно определить, какое количество органического вещества и энергии переходит от одного звена пищевой цепи к другому: от растений — к травоядным животным, от травоядных — к хищникам. Особо следует упомянуть экспериментальную методику создания и исследования искусственных сообществ и экосистем, т.е. по существу лабораторное натурное моделирование взаимодействий организмов друг с другом и с окружающей средой. В ряде случаев для этих целей создают искусственные, частично замкнутые и самоподдерживающиеся многовидовые системы.

Кибернетические исследования и методы математического моделирования приобретают все большее значение в экологии. Потребность в них для целей управления и прогнозирования очень велика. Существуют близкие к реальным процессам математические модели техногенных эмиссии, распространения загрязнителей в атмосфере, самоочищения реки. Намного сложнее моделирование экологических систем. В свое время были получены обобщенные аналитические модели многих экологических процессов. Но реальные объекты экологии столь сложны, что с трудом поддаются строгому математическому описанию даже при значительном упрощении задач. Поскольку в большинстве случаев речь идет о многоуровневых нелинейных задачах с большим числом переменных, аналитические решения практически невозможны, и на первое место выдвигаются численные методы имитационного моделирования, основанные на применении современной вычислительной техники.

В последние годы благодаря мощным компьютерам нового поколения и новым средствам программирования появилась возможность количественного решения ряда сложных системных экологических задач. При этом все большее значение приобретают такие новые компьютерные методы как применение технологии нейронных сетей и аппарата теории нечетких множеств. Быстро совершенствуются приемы глобального моделирования, доведенные до моделей, основанных на проблемно-прогнозном подходе. Они позволяют рассматривать варианты сценариев и строить обоснованные прогнозы глобального развития.

Методы прикладной экологии быстро развиваются. Ее важными средствами становятся:

— создание геоинформационных систем (ГИС-технологий) и банков экологической информации, относящихся к различным регионам, территориям, ландшафтам, агросистемам, промышленным центрам, городам;

— комплексный эколого-экономический анализ состояния территорий для целей экологической диагностики и оздоровления экологической обстановки;

— методы инженерно-экологических изысканий, необходимых для оптимального размещения, проектирования, строительства и реконструкции гражданских и хозяйственных объектов;

— методы экологически ориентированного проектирования хозяйственных и гражданских объектов, основанные на принципах и расчетах экологического соответствия;

— технологические методы снижения отходности, побочных эмиссии и коэффициентов вредного действия производственных комплексов, процессов, устройств и изделий;

— методы оценки влияния техногенных загрязнений и деградации окружающей среды на здоровье людей и состояние природных систем;

— методы контроля экологической регламентации хозяйственной деятельности: экологический мониторинг; экологическая аттестация и паспортизация хозяйственных объектов, территориальных природно-производственных комплексов; экологическая экспертиза; оценка ожидаемых воздействий проектируемых и строящихся объектов на окружающую среду.

Предыдущая

Добавить комментарий